【題目】某金匠以黃金為原材料加工一種飾品,經(jīng)多年的數(shù)據(jù)統(tǒng)計(jì)得知,該金匠平均每加5 個(gè)飾品中有4個(gè)成品和1個(gè)廢品,每個(gè)成品可獲利3萬(wàn)元,每個(gè)廢品損失1萬(wàn)元,假設(shè)該金匠加工每件飾品互不影響,以頻率估計(jì)概率.

(1)若金金匠加工4個(gè)飾品,求其中廢品的數(shù)量不超過(guò)1的概率;

(2)若該金匠加工了 3個(gè)飾品,求他所獲利潤(rùn)的數(shù)學(xué)期望.

(兩小問(wèn)的計(jì)算結(jié)果都用分?jǐn)?shù)表示)

【答案】(1);(2)萬(wàn)元.

【解析】【試題分析】(1)依據(jù)題設(shè)運(yùn)用概率公式分析探求;(2)運(yùn)用數(shù)學(xué)期望的計(jì)算公式求解:

(Ⅰ)依題意,該金匠加工飾品的廢品率為

他加工的4個(gè)飾品中,廢品的數(shù)量不超過(guò)1的概率為

(Ⅱ)設(shè)為加工出的成品數(shù),則可能的取值為0,1,2,3,

,,

,

,

故該金匠所獲利潤(rùn)的數(shù)學(xué)期望是萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)的最小正周期為.

1)求的值;

2)將函數(shù)的圖像向左平移個(gè)單位,再將得到的圖像上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)的圖像,求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一張足夠大的紙板上截取一個(gè)面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個(gè)角上切去邊長(zhǎng)相等的小正方形,再把它的邊沿虛線折起,做成一個(gè)無(wú)蓋的長(zhǎng)方體紙盒(如圖).設(shè)小正方形邊長(zhǎng)為x厘米,矩形紙板的兩邊ABBC的長(zhǎng)分別為a厘米和b厘米,其中ab

(1)當(dāng)a=90時(shí),求紙盒側(cè)面積的最大值;

(2)試確定a,b,x的值,使得紙盒的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是等差數(shù)列,滿足,數(shù)列滿足,且為等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(sinθ,cosθ﹣2sinθ), =(1,2).
(1)若 ,求tanθ的值;
(2)若 ,求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知,且.

(1)求的最小值;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)點(diǎn)的動(dòng)直線與拋物線相交于兩點(diǎn).當(dāng)直線的斜率是時(shí),.

(1)求拋物線的方程;

(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓上的點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為,短軸長(zhǎng)為,直線與橢圓交于、兩點(diǎn).

1求橢圓的方程;

2若直線與圓相切,探究是否為定值,如果是定值,請(qǐng)求出該定值;如果不是定值,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=sin(ωx+φ)( )的最小正周期是π,若其圖象向右平移 個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象(
A.關(guān)于點(diǎn) 對(duì)稱
B.關(guān)于點(diǎn) 對(duì)稱
C.關(guān)于直線 對(duì)稱
D.關(guān)于直線 對(duì)稱

查看答案和解析>>

同步練習(xí)冊(cè)答案