【題目】已知橢圓Cab>0)的兩個焦點分別為F1F2,離心率為,過F1的直線l與橢C交于M,N兩點,且MNF2的周長為8.

(1)求橢圓C的方程;

(2)若直線ykxb與橢圓C分別交于A,B兩點,且OAOB,試問點O到直線AB的距離是否為定值,證明你的結論.

【答案】(1); (2)見解析.

【解析】

(1)根據(jù)三角形周長為8,結合橢圓的定義可知,利用,即可求得的值,求得橢圓方程;(2)分類討論,當直線斜率斜存在時,聯(lián)立得到關于的一元二次方程,利用韋達定理及向量數(shù)量積的坐標運算,求得的關系利用點到直線的距離公式即可求得點到直線的距離是否為定值.

(1)由題意知,4a=8,則a=2,

由橢圓離心率,則b2=3.

∴橢圓C的方程

(2)由題意,當直線AB的斜率不存在,此時可設A(x0,x0),B(x0,-x0).

又A,B兩點在橢圓C上,

,

∴點O到直線AB的距離

當直線AB的斜率存在時,設直線AB的方程為y=kx+b.設A(x1,y1),B(x2,y2

聯(lián)立方程,消去y得(3+4k2)x2+8kbx+4b2-12=0.

由已知△>0,x1+x2=,x1x2=

由OA⊥OB,則x1x2+y1y2=0,即x1x2+(kx1+b)(kx2+b)=0,

整理得:(k2+1)x1x2+kb(x1+x2)+b2=0,

∴7b2=12(k2+1),滿足△>0.

∴點O到直線AB的距離為定值.

綜上可知:點O到直線AB的距離d=為定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下面是追蹤調查200個某種電子元件壽命(單位:)頻率分布直方圖,如圖:

其中300-400、400-500兩組數(shù)據(jù)丟失,下面四個說法中有且只有一個與原數(shù)據(jù)相符,這個說法是( )

①壽命在300-400的頻數(shù)是90;

②壽命在400-500的矩形的面積是0.2;

③用頻率分布直方圖估計電子元件的平均壽命為:

④壽命超過的頻率為0.3

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,圖①是棱長為1的小正方體,圖②,③是由這樣的小正方體擺放而成.按照這樣的方法繼續(xù)擺放,由上而下分別將第1層,第2層,…,第層的小正方體的個數(shù)記為,解答下列問題:

(1)按照要求填表:

1

2

3

4

1

3

6

_

(2)__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù)又有零點的是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知y=fx)是定義在(-,+∞)上的奇函數(shù),且在[0,+∞)上為增函數(shù),

1)求證:函數(shù)在(-,0)上也是增函數(shù);

2)如果f=1,解不等式-1f2x+1≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列兩組數(shù)據(jù):甲:12,13,11,10,14.乙:1017,10,13,10.

1)分別計算兩組數(shù)據(jù)的平均差,并根據(jù)計算結果判斷哪組數(shù)據(jù)波動大.

2)分別計算兩組數(shù)據(jù)的方差,并根據(jù)計算結果判斷哪組數(shù)據(jù)波動大.

3)以上兩種判斷方法的結果是否一致?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

)求曲線的極坐標方程和的直角坐標方程;

直線與曲線分別交于第一象限內的兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ACBC,AC=BC=1,點P是△ABC內一點,則的取值范圍是( 。

A. (﹣,0) B. (0, C. (﹣ D. (﹣1,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)當時,求函數(shù)在點處的切線方程.

(2)求函數(shù)的單調區(qū)間.

查看答案和解析>>

同步練習冊答案