已知等差數(shù)列{an}中,a1=1,公差d>0,且a2,a5,a14分別是等比數(shù)列{bn}的第二項(xiàng)、第三項(xiàng)、第四項(xiàng).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)數(shù)列{cn}滿足對(duì)任意的n∈N*均有an+1=b1c1+b2c2+…+bncn成立,求證:c1+c2+…+cn<4.
考點(diǎn):數(shù)列的求和
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(1)根據(jù)等差數(shù)列性質(zhì),即可求數(shù)列的通項(xiàng)公式;
(2)求出cn的通項(xiàng)公式,利用作差法即可求數(shù)列{cn}的前n項(xiàng)和,即可證明不等式.
解答: 解:(1)∵a2,a5,a14分別是等比數(shù)列{bn}的第二項(xiàng)、第三項(xiàng)、第四項(xiàng).
∴(1+4d)2=(1+d)(1+13d),
∴d=2或d=0(舍去),
則an=2n-1.
又b2=a2=3,b3=a5=9,
則公比q=3,即bn=3n-1
(2)證明:當(dāng)n=1時(shí),a2=b1c1,
∴c1=3<4,
當(dāng)n≥2,an+1=b1c1+b2c2+…+bncn,
an=b1c1+b2c2+…+bn-1cn-1,
兩式相減得an+1-an=bncn
即cn=
an+1-an
bn
=
2
3n-1
,(n≥2)
∴c1+c2+…+cn=3+
2
3
(1-
1
3n-1
)
1-
1
3
=4-
1
3n-1
4成立,
所以,對(duì)于任意的c1+c2+…+cn<4.
點(diǎn)評(píng):本題主要考查遞推數(shù)列的應(yīng)用,以及數(shù)列求和,綜合性較強(qiáng),運(yùn)算量較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,點(diǎn)M的極坐標(biāo)為(4,
π
2
),圓C以M為圓心,4為半徑;又直線l的參數(shù)方程為
x=
1
2
t+1
y=
3
2
t+
3
(t為參數(shù))
(Ⅰ)求直線l和圓C的普通方程;
(Ⅱ)試判定直線l和圓C的位置關(guān)系.若相交,則求直線l被圓C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有A,B兩個(gè)盒子,A盒中裝有3個(gè)紅球,2個(gè)黑球,B盒中裝有2個(gè)紅球,3個(gè)黑球,現(xiàn)從A,B兩個(gè)盒子中各取2個(gè)球互換,假定取到每個(gè)球是等可能的.
(Ⅰ)求B盒中紅球個(gè)數(shù)不變的概率;
(Ⅱ)互換2球后,B盒中紅球的個(gè)數(shù)記為ξ,寫(xiě)出ξ的分布列,并求出ξ的期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
2
34
632

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在底面為平行四邊形的四棱錐P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB,點(diǎn)E是PD的中點(diǎn).
(1)求證:PB∥平面AEC;
(2)求直線BP與平面PAC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求不等式x2-x-2>0的所有解組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn)F1,F(xiàn)2和上下兩個(gè)頂點(diǎn)B1,B2是一個(gè)邊長(zhǎng)為2且∠F1B1F2為60°的菱形的四個(gè)頂點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)右焦點(diǎn)F2,斜率為k(k≠0)的直線l與橢圓C相交于E,F(xiàn)兩點(diǎn),A為橢圓的右頂點(diǎn),直線AE,AF分別交直線x=3于點(diǎn)M,N,線段MN的中點(diǎn)為P,記直線PF2的斜率為k′.試問(wèn):k•k′是否為定值?若為定值請(qǐng)求出;若不為定值請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x||x-2|<a,a>0},集合B={x|
2x-2
x+3
<1}
(1)若a=1,求A∩B;
(2)若A?B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)是R上的奇函數(shù),則f(-2013)+f(0)+f(2013)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案