【題目】數(shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N* . (Ⅰ)證明:數(shù)列{ }是等差數(shù)列;
(Ⅱ)設(shè)bn=3n ,求數(shù)列{bn}的前n項(xiàng)和Sn

【答案】證明(Ⅰ)∵nan+1=(n+1)an+n(n+1), ∴ ,
,
∴數(shù)列{ }是以1為首項(xiàng),以1為公差的等差數(shù)列;
(Ⅱ)由(Ⅰ)知, ,
,
bn=3n =n3n
3n1+n3n
3n+n3n+1
① ﹣②得 3n﹣n3n+1
=
=

【解析】(Ⅰ)將nan+1=(n+1)an+n(n+1)的兩邊同除以n(n+1)得 ,由等差數(shù)列的定義得證.(Ⅱ)由(Ⅰ)求出bn=3n =n3n , 利用錯位相減求出數(shù)列{bn}的前n項(xiàng)和Sn
【考點(diǎn)精析】本題主要考查了等比關(guān)系的確定和數(shù)列的前n項(xiàng)和的相關(guān)知識點(diǎn),需要掌握等比數(shù)列可以通過定義法、中項(xiàng)法、通項(xiàng)公式法、前n項(xiàng)和法進(jìn)行判斷;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD為直角梯形,AD∥BC,AD⊥AB,AD=1,BC=2,E為CD上一點(diǎn),F(xiàn)為BE的中點(diǎn),且DE=1,EC=2,現(xiàn)將梯形沿BE折疊(如圖2),使平面BCE⊥ABED.

(1)求證:平面ACE⊥平面BCE;
(2)能否在邊AB上找到一點(diǎn)P(端點(diǎn)除外)使平面ACE與平面PCF所成角的余弦值為 ?若存在,試確定點(diǎn)P的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓C: =1(a>b>0),橢圓C短軸的一個端點(diǎn)與長軸的一個端點(diǎn)的連線與圓O:x2+y2= 相切,且拋物線y2=﹣4 x的準(zhǔn)線恰好過橢圓C的一個焦點(diǎn). (Ⅰ)求橢圓C的方程;
(Ⅱ)過圓O上任意一點(diǎn)P作圓的切線l與橢圓C交于A,B兩點(diǎn),連接PO并延長交圓O于點(diǎn)Q,求△ABQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊長是a,b,c公差為1的等差數(shù)列,且a+b=2ccosA. (Ⅰ)求證:C=2A;
(Ⅱ)求a,b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=f(x)在[0,2]上單調(diào)遞增,且函數(shù)f(x+2)是偶函數(shù),則下列結(jié)論成立的是(
A.f(1)<f( )<f( )??
B.f( )<f(1)<f( )??
C.f( )<f( )<f(1)??
D.f( )<f(1)<f(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x﹣a|+5x.
(1)當(dāng)a=﹣1時,求不等式f(x)≤5x+3的解集;
(2)若x≥﹣1時有f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中 中,曲線 的參數(shù)方程為 為參數(shù)),以原點(diǎn) 為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫出曲線 的普通方程和極坐標(biāo)方程;
(2)若直線 與曲線 相交于點(diǎn) 兩點(diǎn),且 ,求證: 為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線l的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的單位長度,且以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸)中,圓C的極坐標(biāo)方程為ρ=4cosθ.
(1)若直l線與圓C相切,求實(shí)數(shù)a的值;
(2)若點(diǎn)M的直角坐標(biāo)為(1,1),求過點(diǎn)M且與直線l垂直的直線m的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機(jī)采訪男性、女性用戶各50 名,其中每天玩微信超過6 小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

微信控

非微信控

合計(jì)

男性

26

24

50

女性

30

20

50

合計(jì)

56

44

100


(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“微信控”與”性別“有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5 人并從選出的5 人中再隨機(jī)抽取3 人贈送200 元的護(hù)膚品套裝,記這3 人中“微信控”的人數(shù)為X,試求X 的分布列與數(shù)學(xué)期望. 參考公式: ,其中n=a+b+c+d.

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.323

3.841

5.024

6.635

查看答案和解析>>

同步練習(xí)冊答案