【題目】設(shè)函數(shù)f(x)=|x﹣a|+5x.
(1)當(dāng)a=﹣1時(shí),求不等式f(x)≤5x+3的解集;
(2)若x≥﹣1時(shí)有f(x)≥0,求a的取值范圍.

【答案】解:(1)當(dāng)a=﹣1時(shí),|x+1|+5x≤5x+3,
故|x+1|≤3,
故﹣4≤x≤2,
故不等式f(x)≤5x+3的解集為[﹣4,2];
(2)當(dāng)x≥0時(shí),f(x)=|x﹣a|+5x≥0恒成立,
故只需使當(dāng)﹣1≤x<0時(shí),f(x)=|x﹣a|+5x≥0,
即|x﹣a|≥﹣5x,
即(x﹣a)2≥25x2
即(x﹣a﹣5x)(x﹣a+5x)≥0,
即(4x+a)(6x﹣a)≤0,
當(dāng)a=0時(shí),解4x×6x≤0得x=0,不成立;
當(dāng)a>0時(shí),解(4x+a)(6x﹣a)≤0得,
≤x≤,
故只需使﹣≤﹣1,
解得,a≥4;
當(dāng)a<0時(shí),解(4x+a)(6x﹣a)≤0得,
≤x≤﹣,
故只需使≤﹣1,
解得,a≤﹣6;
綜上所述,a的取值范圍為a≥4或a≤﹣6.
【解析】(1)當(dāng)a=﹣1時(shí),|x+1|+5x≤5x+3,從而解得;
(2)當(dāng)x≥0時(shí),f(x)=|x﹣a|+5x≥0恒成立,從而轉(zhuǎn)化為故只需使當(dāng)﹣1≤x<0時(shí),f(x)=|x﹣a|+5x≥0,從而化簡可得(4x+a)(6x﹣a)≤0,從而分類討論解得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2﹣px﹣2=0},B={x|x2+qx+r=0},若A∪B={﹣2,1,5},A∩B={﹣2},求p+q+r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式(4kx﹣k2﹣12k﹣9)(2x﹣11)>0,其中k∈R;
(1)試求不等式的解集A;
(2)對(duì)于不等式的解集A,記B=A∩Z(其中Z為整數(shù)集),若集合B為有限集,求實(shí)數(shù)k的取值范圍,使得集合B中元素個(gè)數(shù)最少,并用列舉法表示集合B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)圓弧x2+y2=1(x≥0,y≥0)與兩坐標(biāo)軸正半軸圍成的扇形區(qū)域?yàn)镸,過圓弧上中點(diǎn)A做該圓的切線與兩坐標(biāo)軸正半軸圍成的三角形區(qū)域?yàn)镹.現(xiàn)隨機(jī)在區(qū)域N內(nèi)投一點(diǎn)B,若設(shè)點(diǎn)B落在區(qū)域M內(nèi)的概率為P,則P的值為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】f(x)是定義在(﹣∞,+∞)上的偶函數(shù),且在 (﹣∞,0]上是增函數(shù),設(shè)a=f(log47),b=f( ),c=f(0.20.6),則a,b,c大小關(guān)系是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】建造一個(gè)容積為240m3 , 深為5m的長方體無蓋蓄水池,池壁的造價(jià)為180元/m2 , 池底的造價(jià)為350元/m2 , 如何設(shè)計(jì)水池的長與寬,才能使水池的總造價(jià)為42000元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=kax﹣ax(a>0且a≠1)是奇函數(shù).
(1)求常數(shù)k的值;
(2)若a>1,試判斷函數(shù)f(x)的單調(diào)性,并加以證明;
(3)若已知f(1)= ,且函數(shù)g(x)=a2x+a2x﹣2mf(x)在區(qū)間[1,+∞)上的最小值為﹣2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊矩形空地,要在這塊空地上開辟一個(gè)內(nèi)接四邊形為綠地,使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,設(shè)AE=x,綠地面積為y.

(1)寫出y關(guān)于x的函數(shù)關(guān)系式,并指出這個(gè)函數(shù)的定義域;
(2)當(dāng)AE為何值時(shí),綠地面積y最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,其準(zhǔn)線與x軸的交點(diǎn)為Q,過Q點(diǎn)的直線l交拋物線于A,B兩點(diǎn).
(1)若直線l的斜率為 ,求證: ;
(2)設(shè)直線FA,F(xiàn)B的斜率分別為k1 , k2 , 求k1+k2的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案