設(shè)P1(2,3),P2(10,5)且點(diǎn)P在直線P1P2上,滿足,則點(diǎn)P為的坐標(biāo)為

[  ]
A.

()

B.

(18,7)

C.

()或(18,7)

D.

(18,7)或(-6,1)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P1(4,-3),P2(-2,6),且P在P1P2的延長(zhǎng)線上,使|
P1P
|=2|
PP2
|,則求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)P(1,0)做曲線C:xy=1,x∈(0,+∞),的切線,切點(diǎn)為Q1,設(shè)Q1在x軸上的投影為P1,又過(guò)P1做曲線C的切線,切點(diǎn)為Q2,設(shè)Q2在x軸上的投影為P2,…,依次下去得到一系列點(diǎn)Q1、Q2、Q3、…、Qn的橫坐標(biāo)為an
(1)求a1的值.
(2)求證數(shù)列{an}是等比數(shù)列.
(3)設(shè)bn=
16an+1316an-3
,問(wèn)是否存在實(shí)數(shù)m,使得對(duì)于任意的正整數(shù)M,N,都有|bM-bN|<m恒成立.若存在,求出m;不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P1,P2,…,Pj為集合P={1,2,3,…,i}的子集,其中i,j為正整數(shù).記aij為滿足P1∩P2∩…∩Pj=∅的有序子集組(P1,P2,…,Pj)的個(gè)數(shù).
(Ⅰ)求a22的值;
(Ⅱ)求aij的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:北京模擬題 題型:解答題

已知f是直角坐標(biāo)平面xOy到自身的一個(gè)映射,點(diǎn)P在映射f下的象為點(diǎn)Q,記作Q=f(P),設(shè)P1(x1,y1),P2=f(P1),P3=f(P2),…,Pn=f(Pn-1),…。如果存在一個(gè)圓,使所有的點(diǎn)Pn(xn,yn)(n∈N*)都在這個(gè)圓內(nèi)或圓上,那么稱這個(gè)圓為點(diǎn)Pn(xn,yn)的一個(gè)收斂圓。特別地,當(dāng)P1=f(P1)時(shí),則稱點(diǎn)P1為映射f下的不動(dòng)點(diǎn),
(Ⅰ)若點(diǎn)P(x,y)在映射f下的象為點(diǎn)Q(2x,1-y),
①求映射f下不動(dòng)點(diǎn)的坐標(biāo);
②若P1的坐標(biāo)為(1,2),判斷點(diǎn)Pn(xn,yn)(n∈N*)是否存在一個(gè)半徑為3的收斂圓,并說(shuō)明理由;
(Ⅱ)若點(diǎn)P(x,y)在映射f下的象為點(diǎn),P1(2,3),求證:點(diǎn)Pn(xn,yn)(n∈N*)存在一個(gè)半徑為的收斂圓。

查看答案和解析>>

同步練習(xí)冊(cè)答案