【題目】在直角坐標系中,已知中心在原點,離心率為的橢圓的一個焦點為圓 的圓心.

(Ⅰ)求橢圓的方程;

(Ⅱ)設是橢圓上一點,過作兩條斜率之積為的直線, ,當直線, 都與圓相切時,求的坐標.

【答案】,或,或,或.

【解析】試題分析:(1)圓心坐標是已知的,故橢圓的焦點是已知的,從而半焦距已知了,又有離心率,故半長軸長也能求出,從而求出,而根據(jù)題意,橢圓方程是標準方程,可其方程易得;(2)設P點坐標為,再設一條切線的斜率為,則另一條切線的斜率為,三個未知數(shù)需要三個方程,點P在橢圓上,一個等式,兩條直線都圓的切線,利用圓心到切線的距離等于圓的半徑又得到兩個等式,三個等量關(guān)系,三個未知數(shù)理論上可解了,當然具體解題時,可設切線斜率為,則點斜率式寫出直線方程,利用圓心到切線距離等于圓半徑得出關(guān)于的方程,而是這個方程的兩解,由韋達定理得,這個結(jié)果又是,就列出了關(guān)于P點坐標的一個方程,再由P點在橢圓上,可解出P點坐標.

試題解析:(1)圓的標準方程為,圓心為,所以,又, , ,而據(jù)題意橢圓的方程是標準方程,故其方程為4

2)設,得

,依題意的距離為

整理得同理

是方程的兩實根10

12

14

16

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某印刷廠為了研究印刷單冊書籍的成本y(單位:元)與印刷冊數(shù)x(單位:千冊)之間的關(guān)系,在印制某種書籍時進行了統(tǒng)計,相關(guān)數(shù)據(jù)見下表:

根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到了兩個回歸方程,甲:

為了評價兩種模型的擬合效果,完成以下任務:

(1)(。┩瓿上卤恚ㄓ嬎憬Y(jié)果精確到0.1):

)分別計算模型甲與模型乙的殘差平方和,并通過比較,的大小,判斷哪個模型擬合效果更好.

(2)該書上市后,受到廣大讀者的熱烈歡迎,不久便全部售罄,于是印刷廠決定進行二次印刷,根據(jù)市場調(diào)查,新需求量為8千冊(概率為0.8)或10千冊(概率為0.2),若印刷廠以沒測5元的價格將書籍出售給訂貨商,問印刷廠二次印刷8千冊還是10千冊恒獲得更多的利潤?(按(1)中擬合效果較好的模型計算印刷單冊書的成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為﹣4,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且2csinBcosA﹣bsinC=0.
(1)求角A;
(2)若△ABC的面積為 ,b+c=5,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知﹣3≤log x≤﹣ ,求函數(shù)f(x)=log2 log2 的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的左頂點為,且橢圓與直線相切,

(1)求橢圓的標準方程;

(2)過點的動直線與橢圓交于兩點,設為坐標原點,是否存在常數(shù),使得?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1 , F2為橢圓C: =1(a>b>0)的左右焦點,O是坐標原點,過F2作垂直于x軸的直線MF2交橢圓于M,設|MF2|=d.
(1)證明:b2=ad;
(2)若M的坐標為( ,1),求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x(x∈[﹣1,2])的值域為集合A,g(x)=ax+2(x∈[﹣1,2])的值域為集合B.若AB,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=|x+1|+|x﹣1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≤log2(a2﹣4a+12)對任意實數(shù)a恒成立,求x的取值范圍.

查看答案和解析>>

同步練習冊答案