【題目】已知F1 , F2為橢圓C: =1(a>b>0)的左右焦點,O是坐標(biāo)原點,過F2作垂直于x軸的直線MF2交橢圓于M,設(shè)|MF2|=d.
(1)證明:b2=ad;
(2)若M的坐標(biāo)為( ,1),求橢圓C的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)五邊形中,
,將沿折到的位置,得到四棱錐,如圖(2),點為線段的中點,且平面.
(1)求證:平面平面;
(2)若四棱柱的體積為,求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)圖象在點(e為自然對數(shù)的底數(shù))處的切線斜率為3.
(1)求實數(shù)的值;
(2)若,且對任意恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知中心在原點,離心率為的橢圓的一個焦點為圓: 的圓心.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上一點,過作兩條斜率之積為的直線, ,當(dāng)直線, 都與圓相切時,求的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= +3lnax﹣x,g(x)=xex+cosx(a≠0).
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若x1∈[1,2],x2∈[0,3],使得f( )>g(x2)成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年袁隆平的超級雜交水稻再創(chuàng)畝產(chǎn)量世界紀(jì)錄,為了測試水稻生長情況,專家選取了甲、乙兩塊地,從這兩塊地中隨機(jī)各抽取株水稻樣本,測量他們的高度,獲得的高度數(shù)據(jù)的莖葉圖如圖所示:
(1)根據(jù)莖葉圖判斷哪塊田的平均高度較高;
(2)計算甲乙兩塊地株高方差;
(3)現(xiàn)從乙地高度不低于的樣本中隨機(jī)抽取兩株,求高度為的樣本被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國的煙花名目繁多,花色品種繁雜.其中“菊花”煙花是最壯觀的煙花之一,制造時一般是期望在它達(dá)到最高點時爆裂,通過研究,發(fā)現(xiàn)該型煙花爆裂時距地面的高度h(單位:米)與時間t(單位:秒)存在函數(shù)關(guān)系,并得到相關(guān)數(shù)據(jù)如下表:
時間t | 2 | 4 | |
高度h | 10 | 25 | 17 |
( I)根據(jù)上表數(shù)據(jù),從下列函數(shù)中,選取一個函數(shù)描述該型煙花爆裂時距地面的高度h與時間t的變化關(guān)系:y1=kt+b,y2=at2+bt+c,y3=abt , 確定此函數(shù)解析式,并簡單說明理由;
( II)利用你選取的函數(shù),判斷煙花爆裂的最佳時刻,并求出此時煙花距地面的高度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有能力互異的3人應(yīng)聘同一公司,他們按照報名順序依次接受面試,經(jīng)理決定“不錄用第一個接受面試的人,如果第二個接受面試的人比第一個能力強(qiáng),就錄用第二個人,否則就錄用第三個人”,記該公司錄用到能力最強(qiáng)的人的概率為p,錄用到能力中等的人的概率為q,則(p,q)=( )
A.( , )
B.( , )
C.( , )
D.( , )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com