【題目】我國的煙花名目繁多,花色品種繁雜.其中“菊花”煙花是最壯觀的煙花之一,制造時一般是期望在它達(dá)到最高點時爆裂,通過研究,發(fā)現(xiàn)該型煙花爆裂時距地面的高度h(單位:米)與時間t(單位:秒)存在函數(shù)關(guān)系,并得到相關(guān)數(shù)據(jù)如下表:

時間t

2

4

高度h

10

25

17

( I)根據(jù)上表數(shù)據(jù),從下列函數(shù)中,選取一個函數(shù)描述該型煙花爆裂時距地面的高度h與時間t的變化關(guān)系:y1=kt+b,y2=at2+bt+c,y3=abt , 確定此函數(shù)解析式,并簡單說明理由;
( II)利用你選取的函數(shù),判斷煙花爆裂的最佳時刻,并求出此時煙花距地面的高度.

【答案】解:(I)由表中數(shù)據(jù)分析可知,煙花距地面的高度隨時間的變化呈先上升再下降的趨勢,則在給定的三類函數(shù)中,只有y2可能滿足,故選擇取該函數(shù).
設(shè)h(t)=at2+bt+c,有
所以h(t)=﹣4t2+20t+1(t≥0),
(Ⅱ) ,
∴當(dāng)煙花沖出后2.5s是爆裂的最佳時刻,此時距地面的高度為26米
【解析】(I)由表中數(shù)據(jù)分析可知,煙花距地面的高度隨時間的變化呈先上升再下降的趨勢,則在給定的三類函數(shù)中,只有y2可能滿足,設(shè)h(t)=at2+bt+c,利用待定系數(shù)法將表格所提供的三組數(shù)據(jù)代入,列方程組求出函數(shù)解析式;(II)由二次函數(shù)的圖象與性質(zhì),求出即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為﹣4,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1 , F2為橢圓C: =1(a>b>0)的左右焦點,O是坐標(biāo)原點,過F2作垂直于x軸的直線MF2交橢圓于M,設(shè)|MF2|=d.
(1)證明:b2=ad;
(2)若M的坐標(biāo)為( ,1),求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x(x∈[﹣1,2])的值域為集合A,g(x)=ax+2(x∈[﹣1,2])的值域為集合B.若AB,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解甲、乙兩個班級某次考試的數(shù)學(xué)成績(單位:分),從甲、乙兩個班級中分別隨機(jī)抽取5名學(xué)生的成績作樣本,如圖是樣本的莖葉圖,規(guī)定:成績不低于120分時為優(yōu)秀成績.

(1)從甲班的樣本中有放回的隨機(jī)抽取2個數(shù)據(jù),求其中只有一個優(yōu)秀成績的概率;
(2)從甲、乙兩個班級的樣本中分別抽取2名學(xué)生的成績,記獲優(yōu)秀成績的總?cè)藬?shù)為X,求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖為某市2017年2月28天的日空氣質(zhì)量指數(shù)折線圖.

由中國空氣質(zhì)量在線監(jiān)測分析平臺提供的空氣質(zhì)量指數(shù)標(biāo)準(zhǔn)如下:

(1)請根據(jù)所給的折線圖補(bǔ)全下方的頻率分布直方圖(并用鉛筆涂黑矩形區(qū)域),并估算該市2月份空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)的平均數(shù)(保留小數(shù)點后一位);

(2)研究人員發(fā)現(xiàn),空氣質(zhì)量指數(shù)測評中與燃燒排放的兩個項目存在線性相關(guān)關(guān)系,以為單位,下表給出的相關(guān)數(shù)據(jù):

關(guān)于的回歸方程,并估計當(dāng)排放量是時, 的值.

(用最小二乘法求回歸方程的系數(shù)是,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,),數(shù)列滿足:,且).

(Ⅰ)求數(shù)列的通項公式;

(Ⅱ)求證:數(shù)列為等比數(shù)列;

(Ⅲ)求數(shù)列的前項和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=|x+1|+|x﹣1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≤log2(a2﹣4a+12)對任意實數(shù)a恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各組函數(shù)是同一函數(shù)的是(

②f(x)=|x|與 ;
③f(x)=x0與g(x)=1;
④f(x)=x2﹣2x﹣1與g(t)=t2﹣2t﹣1.
A.①②
B.①③
C.②④
D.③④

查看答案和解析>>

同步練習(xí)冊答案