【題目】2016年6月22 日,“國際教育信息化大會”在山東青島開幕.為了解哪些人更關注“國際教育信息化大會”,某機構隨機抽取了年齡在15-75歲之間的100人進行調查,并按年齡繪制成頻率分布直方圖,如圖所示,其分組區(qū)間為: .把年齡落在區(qū)間和 內的人分別稱為 “青少年”和“中老年”.
(1)根據(jù)頻率分布直方圖求樣本的中位數(shù)(保留兩位小數(shù))和眾數(shù);
(2)根據(jù)已知條件完成下面的列聯(lián)表,并判斷能否有的把握認為“中老年”比“青少年”更加關注“國際教育信息化大會”;
附:參考公式,其中.
臨界值表:
【答案】(1)36.43;(2)有的把握認為“中老年”比“青少年”更加關注“國際教育信息化大會”
【解析】試題分析:(1)根據(jù)頻率分布直方圖可知樣本的眾數(shù)為40,因為,
設樣本的中位數(shù)為,則,所以,即樣本的中位數(shù)約為36.43.(2)分別求得“青少年人”及“中老年人”人數(shù),完成2×2列聯(lián)表,求K2,與臨界值對比,即可得到有99%的把握認為“中老年人”比“青少年人”更加關注兩會.
試題解析:
(1)根據(jù)頻率分布直方圖可知樣本的眾數(shù)為40,因為,
設樣本的中位數(shù)為,則,所以,即樣本的中位數(shù)約為36.43.
(2)依題意可知,抽取的“青少年”共有人,“中老年”共有人.
完成的列聯(lián)表如下:
結合列聯(lián)表的數(shù)據(jù)得 ,
因為,
所以有的把握認為“中老年”比“青少年”更加關注“國際教育信息化大會”.
科目:高中數(shù)學 來源: 題型:
【題目】斜三棱柱A1B1C1﹣ABC中,側面AA1C1C⊥底面ABC,側面AA1C1C是菱形,∠A1AC=60°,AC=3,AB=BC=2,E、F分別是A1C1 , AB的中點.
(1)求證:EF∥平面BB1C1C;
(2)求證:CE⊥面ABC.
(3)求四棱錐E﹣BCC1B1的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中,正確的是:( )
A. 命題“若,則”的否命題為“若,則”
B. 命題“存在,使得”的否定是:“任意,都有”
C. 若命題“非”與命題“或”都是真命題,那么命題一定是真命題
D. 命題“若,則”的逆命題是真命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)在等差數(shù)列中,已知,前項和為,且,求當取何值時, 取得最大值,并求出它的最大值;
(2)已知數(shù)列的通項公式是,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓的左、右頂點分別為,上、下頂點分別為,兩個焦點分別為, ,四邊形的面積是四邊形的面積的2倍.
(1)求橢圓的方程;
(2)過橢圓的右焦點且垂直于軸的直線交橢圓于兩點, 是橢圓上位于直線兩側的兩點.若,求證:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD.
(1)證明:平面PQC⊥平面DCQ
(2)求二面角Q﹣BP﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左,右焦點分別為.點在橢圓上,直線過坐標原點,若, .
(1)求橢圓的方程;
(2) 設橢圓在點處的切線記為直線,點在上的射影分別為,過作的垂線交軸于點,試問是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四棱錐P﹣ABCD的四條側棱長相等,底面ABCD為正方形,M為PB的中點,求證:
(Ⅰ)PD∥平面ACM;
(Ⅱ)PO⊥平面ABCD;
(Ⅲ)若PA=AB,求異面直線PD與CM所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com