已知函數(shù).
(1)畫出該函數(shù)的圖像;
(2)設(shè),求在上的最大值.
(1)函數(shù)的圖像詳見解析;(2)當(dāng)時,;當(dāng)時,.
解析試題分析:(1)先化簡函數(shù)得,進(jìn)而根據(jù)二次函數(shù)的圖像分段作出該函數(shù)的圖像即可;(2)結(jié)合(1)中函數(shù)的圖像,分別得到時的最大值為,時的最大值為,先由求出,進(jìn)而分、兩種情況,求取函數(shù)在的最大值即可.
(1)因為
結(jié)合二次函數(shù)的圖像可作出該函數(shù)的圖像如下圖:
(2)當(dāng)時,因為的最大值為,時,單調(diào)遞增,最大值為
令,則
所以當(dāng)時, ,此時在上,
當(dāng)時,,此時在上, 8分.
考點(diǎn):1.分段函數(shù);2.函數(shù)的圖像;3.函數(shù)的最值;4.分類討論的思想.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
設(shè)是已知平面上所有向量的集合,對于映射,記的象為。若映射滿足:對所有及任意實(shí)數(shù)都有,則稱為平面上的線性變換。現(xiàn)有下列命題:
①設(shè)是平面上的線性變換,則
②對設(shè),則是平面上的線性變換;
③若是平面上的單位向量,對設(shè),則是平面上的線性變換;
④設(shè)是平面上的線性變換,,若共線,則也共線。
其中真命題是 (寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù).
(1)若在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(2)若,若函數(shù)在 [1,3]上恰有兩個不同零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是上的奇函數(shù),且當(dāng)時,.
(1)求的表達(dá)式;
(2)畫出的圖象,并指出的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域為的函數(shù)是奇函數(shù),
(1)求的值;
( 2) 判斷并證明函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=是奇函數(shù).
(1)求實(shí)數(shù)m的值;
(2)若函數(shù)f(x)在區(qū)間[-1,a-2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如果函數(shù)的定義域為R,對于定義域內(nèi)的任意,存在實(shí)數(shù)使得成立,則稱此函數(shù)具有“性質(zhì)”。
(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有的值;若不具有“性質(zhì)”,說明理由;
(2)已知具有“性質(zhì)”,且當(dāng)時,求在上有最大值;
(3)設(shè)函數(shù)具有“性質(zhì)”,且當(dāng)時,.若與交點(diǎn)個數(shù)為2013,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知f(x)是偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),如果f(ax+1)≤f(x-2)在x∈[,1]上恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com