已知函數(shù)f(x)=
3
sin(ωx+
π
6
)(ω>0)周期為4.
(1)求f(x)的解析式;
(2)將函數(shù)f(x)圖象向右平移
1
3
個單位長度得到函數(shù)g(x)圖象,P,Q分別為函數(shù)g(x)圖象在y軸右側(cè)第一個的最高點和最低點,求△OQP的面積.
考點:兩角和與差的正弦函數(shù)
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)利用周期公式求得ω,則函數(shù)解析式可得.
(2)先求得g(x)的解析式,進而求得P,Q的坐標(biāo),通過PQ2=OP2+OQ2,判斷出∠POQ=
π
2
,最后利用面積公式求得答案.
解答: 解:(1)T=
ω
=4,
∴ω=
π
2
,
∴f(x)=
3
sin(
π
2
x+
π
6
).
(2)將f(x)向右平移
1
3
個單位長度得到函數(shù)g(x)=
3
sin
π
2
x,
∵P,Q分別為函數(shù)g(x)圖象在y軸右側(cè)第一個的最高點和最低點,
∴P(1,
3
),Q(3,-
3
),
∴OP=2,PQ=4,OQ=2
3
,
∴PQ2=OP2+OQ2,
∴∠POQ=
π
2

∴△OQP的面積S=
1
2
OP•OQ=2
3
點評:本題主要考查了三角函數(shù)圖象與性質(zhì),解三角形的問題.考查了學(xué)生基礎(chǔ)知識綜合運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點G是△ABC的重心,A(0,-1),B(0,1),在x軸上有一點M滿足|
MA
|=|
MC
|,
GM
AB
(λ∈R),求點C的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等差數(shù)列{an}滿足:a12+a1a2+
5
4
a22≤1,求a1+a2+a3…+a15的最大正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,已知E為棱CC1上的動點.
(1)求證:A1E⊥BD;
(2)當(dāng)E為棱CC1的中點時,求直線A1E與平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=(2-a)lnx+
1
x
+2ax,g(x)=ax+
1
x
+(3-a)lnx,a∈R
(Ⅰ)當(dāng)a=0時,求g(x)的極值;
(Ⅱ)當(dāng)a=0時,求f(x)的單調(diào)區(qū)間;
(Ⅲ)給出如下定義:對于函數(shù)y=F(x)圖象上任意不同的兩點A(x1,y1),(x2,y2).如果對于函數(shù)y=F(x)圖象上的點M(x0,y0)(其中x0=
x1+x2
2
)總能使得F(x1)-F(x2)=F′(x0)(x1-x2)成立,則稱函數(shù)具備性質(zhì)“L”.試判斷函數(shù)F(x)=f(x)-g(x)是否具備性質(zhì)“L”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+mx在(0,1)上是增函數(shù).
(Ⅰ)實數(shù)m的取值集合為A,當(dāng)m取值集合A中的最小值時,定義數(shù)列{an}:滿足a1=3,且an>0,an+1=
-3f′(an)+9
(n∈N*),求數(shù)列{an}的通項公式;
(Ⅱ)根據(jù)(Ⅰ)結(jié)論,若b2=
(sn-2)•3n
4nan
(n∈N*),數(shù)列{bn}的前n項和為Sn,求證:Sn
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),D(1,0),過橢圓C的焦點F(
2
,0)且垂直于1x軸的直線與橢圓交于A,B兩點,
OA
OB
=
5
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點D的直線與橢圓C交于M,N兩點,若
MD
=2
DN
,求直線MN的方程;
(Ⅲ)設(shè)直線y=kx+2交橢圓于P,Q兩點,若
DP
DQ
=0,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公比為q(q≠1)的等比數(shù)列,且a1,a3,a2成等差數(shù)列.
(1)求q的值;
(2)設(shè){bn}是以-
1
2
為首項,q為公差的等差數(shù)列,求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,且經(jīng)過點(1,
2
2
).
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A,B為橢圓上兩點,直線AB與坐標(biāo)軸不垂直.設(shè)T(x0,0),若|AT|=|BT|,且|AB|=2,求x0的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案