如圖,正方體ABCD-A1B1C1D1中,已知E為棱CC1上的動(dòng)點(diǎn).
(1)求證:A1E⊥BD;
(2)當(dāng)E為棱CC1的中點(diǎn)時(shí),求直線A1E與平面A1BD所成角的正弦值.
考點(diǎn):直線與平面所成的角,棱柱的結(jié)構(gòu)特征
專題:空間角,空間向量及應(yīng)用
分析:(1)連AC,設(shè)AC∩BD=O,連A1O,OE.由已知條件推導(dǎo)出BD⊥面ACEA1.由此能證明A1E⊥BD.
(2)由已知條件推導(dǎo)出∠A1OE為二面角A1-BD-E的平面角.∠EA1O是直線A1E與平面A1BD所成角.由此能求出直線A1E與平面A1BD所成角的正弦.
解答: (1)證明:連AC,設(shè)AC∩BD=O,連A1O,OE.
由A1A⊥面ABCD,知BD⊥A1A,又BD⊥AC,
故BD⊥面ACEA1
由A1E?面ACEA1,得A1E⊥BD.
(2)解:在正△A1BD中,BD⊥A1O,而B(niǎo)D⊥A1E,
又A1O?面A1OE,A1E?平面A1OE,且A1O∩A1E=A1,
故BD⊥面A1OE,于是BD⊥OE,∠A1OE為二面角A1-BD-E的平面角.
正方體ABCD-A1B1C1D1中,設(shè)棱長(zhǎng)為2a,且E為棱CC1的中點(diǎn),
由平面幾何知識(shí)得EO=
3
a
,A1O=
6
a
,A1E=3a,
滿足A1E2=A1O2+EO2,故EO⊥C1O.
由EO⊥BD,知EO⊥面A1BD,
故∠EA1O是直線A1E與平面A1BD所成角.
又sin∠EA1O=
EO
A1E
=
3
3
,
故直線A1E與平面A1BD所成角的正弦是
3
3
點(diǎn)評(píng):本題考查異面直線垂直的證明,考查直線與平面甩成角的正弦值的求法,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱錐A-BCD中,∠BAC=∠BAD=∠DAC=60°,AC=AD,且AB:AC=3:2.
(1)證明:AB⊥CD;
(2)證明:平面ACD⊥平面BCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定有限單調(diào)遞增數(shù)列{xn}(n∈N*,n≥2)且xi≠0(1≤i≤n),定義集合A={(xi,xj)|1≤i,j≤n,且i,j∈N*}.若對(duì)任意點(diǎn)A1∈A,存在點(diǎn)A2∈A使得OA1⊥OA2(O為坐標(biāo)原點(diǎn)),則稱數(shù)列{xn}具有性質(zhì)P.
(Ⅰ)給出下列四個(gè)命題,其中正確的是
 
(填上所有正確有命題的序號(hào))
①數(shù)列{xn}:-2,2具有性質(zhì)P;
②數(shù)列{yn}:-2,-1,1,3具有性質(zhì)P;
③若數(shù)列{xn}具有P,則{xn}中一定存在兩項(xiàng)xi,xj,使得xi+xj=0;
④若數(shù)列{xn}具有性質(zhì)P,x1=-1,x2>0且xn>1(n≥3),則x2=1.
(Ⅱ)若數(shù)列{xn}只有2014項(xiàng)且具有性質(zhì)P,x1=-1,x3=2,則{xn}的所有項(xiàng)和S2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有驅(qū)蟲(chóng)藥1618和1573各3杯,從中隨機(jī)取出3杯稱為一次試驗(yàn)(假定每杯被取到的概率相等),將1618全部取出稱為試驗(yàn)成功.
(1)列出一次試驗(yàn)的所有可能情況.
(2)求一次試驗(yàn)成功的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=t>1,an+1=
n+1
n
an.函數(shù)f(x)=ln(1+x)+mx2-x(m∈[0,
1
2
]).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)試討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)若m=
1
2
,數(shù)列{bn}滿足bn=f(an)+an,求證:
2
an+2
an
bn
<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-ax+a
(Ⅰ)若函數(shù)f(x)恰好有兩個(gè)不同的零點(diǎn),求a的值.
(Ⅱ)若函數(shù)f(x)的圖象與直線y=x-1相切,求a的值及相應(yīng)的切點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sin(ωx+
π
6
)(ω>0)周期為4.
(1)求f(x)的解析式;
(2)將函數(shù)f(x)圖象向右平移
1
3
個(gè)單位長(zhǎng)度得到函數(shù)g(x)圖象,P,Q分別為函數(shù)g(x)圖象在y軸右側(cè)第一個(gè)的最高點(diǎn)和最低點(diǎn),求△OQP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga(x+1)與g(x)=loga(-x+1)(a>0且a≠1).
(1)若函數(shù)f(x)=loga(x+1)過(guò)點(diǎn)(7,3),求g(
7
8
)的值;
(2)當(dāng)0<a<1時(shí),解不等式2f(x)≥g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|
1
4
≤2x≤32},B={x|2mx-1>0,m≥0}.
(1)當(dāng)x∈Z時(shí),求A的非空真子集的個(gè)數(shù);
(2)若A∩B=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案