【題目】如圖,已知三棱柱,平面平面,分別是的中點(diǎn).

(1)證明:;

(2)求直線(xiàn)與平面所成角的余弦值.

【答案】(1)證明見(jiàn)解析;(2).

【解析】

(1)由題意首先證得線(xiàn)面垂直,然后利用線(xiàn)面垂直的定義即可證得線(xiàn)線(xiàn)垂直;

(2)建立空間直角坐標(biāo)系,分別求得直線(xiàn)的方向向量和平面的法向量,然后結(jié)合線(xiàn)面角的正弦值和同角三角函數(shù)基本關(guān)系可得線(xiàn)面角的余弦值.

(1)如圖所示,連結(jié),

等邊中,,則,

平面ABC⊥平面,且平面ABC平面,

由面面垂直的性質(zhì)定理可得:平面,故,

由三棱柱的性質(zhì)可知,而,故,且,

由線(xiàn)面垂直的判定定理可得:平面

結(jié)合平面,故.

(2)在底面ABC內(nèi)作EHAC,以點(diǎn)E為坐標(biāo)原點(diǎn),EH,EC,方向分別為x,y,z軸正方向建立空間直角坐標(biāo)系.

設(shè),則,,,

據(jù)此可得:,

可得點(diǎn)的坐標(biāo)為,

利用中點(diǎn)坐標(biāo)公式可得:,由于

故直線(xiàn)EF的方向向量為:

設(shè)平面的法向量為,則:

,

據(jù)此可得平面的一個(gè)法向量為,

此時(shí),

設(shè)直線(xiàn)EF與平面所成角為,則.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)過(guò)點(diǎn),其參數(shù)方程為為參數(shù), ),以為極點(diǎn), 軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.

(1)求曲線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;

(2)求已知曲線(xiàn)和曲線(xiàn)交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=|xa|+2a,且不等式fx)≤4的解集為{x|1x3}

1)求實(shí)數(shù)a的值.

2)若存在實(shí)數(shù)x0,使fx0)≤5m2+mf(﹣x0)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C的圓心在直線(xiàn)x﹣2y﹣3=0上,并且經(jīng)過(guò)A(2,﹣3)和B(﹣2,﹣5),求圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】可組成不同的四位數(shù)的個(gè)數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間及極值;

(2)若是函數(shù)的兩個(gè)不同零點(diǎn),求證:①;②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 )經(jīng)過(guò)點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線(xiàn)構(gòu)成等腰直角三角形.

(1)求橢圓的方程;

(2)動(dòng)直線(xiàn) , )交橢圓、兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過(guò)點(diǎn).若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究經(jīng)常使用手機(jī)是否對(duì)數(shù)學(xué)學(xué)習(xí)成績(jī)有影響,某校高二數(shù)學(xué)研究性學(xué)習(xí)小組進(jìn)行了調(diào)查,隨機(jī)抽取高二年級(jí)50名學(xué)生的一次數(shù)學(xué)單元測(cè)試成績(jī),并制成下面的2×2列聯(lián)表:

及格

不及格

合計(jì)

很少使用手機(jī)

20

5

25

經(jīng)常使用手機(jī)

10

15

25

合計(jì)

30

20

50

則有( 。┑陌盐照J(rèn)為經(jīng)常使用手機(jī)對(duì)數(shù)學(xué)學(xué)習(xí)成績(jī)有影響.

參考公式:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

A.97.5%B.99%C.99.5%D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中裝有紅球3個(gè)、白球2個(gè)、黑球1個(gè),從中任取2個(gè),則互斥而不對(duì)立的兩個(gè)事件是  

A. 至少有一個(gè)白球;都是白球 B. 至少有一個(gè)白球;至少有一個(gè)紅球

C. 至少有一個(gè)白球;紅、黑球各一個(gè) D. 恰有一個(gè)白球;一個(gè)白球一個(gè)黑球

查看答案和解析>>

同步練習(xí)冊(cè)答案