【題目】函數(shù),.
(1)求函數(shù)的單調區(qū)間及極值;
(2)若,是函數(shù)的兩個不同零點,求證:①;②.
【答案】(1)在遞減,遞增,,無極大值(2)見解析
【解析】分析:(1)求出,解不等式得增區(qū)間,解不等式得減區(qū)間,從而也可得到極值;
(2)①先確定函數(shù)的變化趨勢,由函數(shù)式,知或時,都有,從而要有兩個零點,則必有,從而得.因此兩個零點,不妨設,通過構造函數(shù),由的單調性可證,即,最后由的單調性,得證,②證明:令,然后證明=,由,得,計算
,由由得,再由在上的單調性可證結論.
詳解:(1)定義域:
令,則,令,則
∴在遞減,遞增
∴,無極大值
(2)由(1)知時,;時,
要使有兩個不同零點,則即
不妨設,
①證明:令,則
在遞增而,∴
∴即
∵,∴
∵且在遞減
∴,即
②證明:令,下面先證明,
∵,,∴在遞增
∴,∴在遞增,∴
即在總成立,∵,∴
又
∵由知,
又,且及在遞減
∴,即
科目:高中數(shù)學 來源: 題型:
【題目】中石化集團獲得了某地深海油田區(qū)塊的開采權,集團在該地區(qū)隨機初步勘探了部分兒口井,取得了地質資料.進入全面勘探時期后,集團按網(wǎng)絡點來布置井位進行全面勘探. 由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質資料,不必打這口新井,以節(jié)約勘探費用.勘探初期數(shù)據(jù)資料見如表:
(Ⅰ)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求,并估計的預報值;
(Ⅱ)現(xiàn)準備勘探新井,若通過1、3、5、7號井計算出的的值(精確到0.01)相比于(Ⅰ)中的值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?
(參考公式和計算結果:)
(Ⅲ)設出油量與勘探深度的比值不低于20的勘探并稱為優(yōu)質井,那么在原有井號1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質井的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點,直線設圓C的半徑為1,圓心在直線l上.
(1)若圓心C也在直線上,過點作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使得,求圓心C的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若圓關于直線對稱,則的最小值為__________.由點向圓所作兩條切線,切點記為,當取最小值時,外接圓的半徑為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一個正方形花圃被分成5份.
(1)若給這5個部分種植花,要求相鄰兩部分種植不同顏色的花,己知現(xiàn)有紅、黃、藍、綠4種顏色不同的花,求有多少種不同的種植方法?
(2)若向這5個部分放入7個不同的盆栽,要求每個部分都有盆栽,問有多少種不同的放法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于定義在上的函數(shù),有下列四個命題:
①若是奇函數(shù),則的圖象關于點對稱;
②若對,有,則的圖象關于直線對稱;
③若對,有,則的圖象關于點對稱;
④函數(shù)與函數(shù)的圖像關于直線對稱.
其中正確命題的序號為__________.(把你認為正確命題的序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)2018年招聘員工,其中,,,,五種崗位的應聘人數(shù)、錄用人數(shù)和錄用比例(精確到1%)如下:
崗位 | 男性 應聘人數(shù) | 男性 錄用人數(shù) | 男性 錄用比例 | 女性 應聘人數(shù) | 女性 錄用人數(shù) | 女性 錄用比例 |
269 | 167 | 40 | 24 | |||
40 | 12 | 202 | 62 | |||
177 | 57 | 184 | 59 | |||
44 | 26 | 38 | 22 | |||
3 | 2 | 3 | 2 | |||
總計 | 533 | 264 | 467 | 169 |
(1)從表中所有應聘人員中隨機選擇1人,試估計此人被錄用的概率;
(2)從應聘崗位的6人中隨機選擇2人.記為這2人中被錄用的人數(shù),求的分布列和數(shù)學期望;
(3)表中,,,,各崗位的男性、女性錄用比例都接近(二者之差的絕對值不大于),但男性的總錄用比例卻明顯高于女性的總錄用比例.研究發(fā)現(xiàn),若只考慮其中某四種崗位,則男性、女性的總錄用比例也接近,請寫出這四種崗位.(只需寫出結論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學團委組織了“弘揚奧運精神,愛我中華”的知識競賽,從參加考試的學生中抽出60名學生,將其成績(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后畫出如下部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:
(1)求第四小組的頻率,并補全這個頻率分布直方圖;
(2)估計這次考試的及格率(60分及以上為及格)和平均分;
(3)從成績是[40,50)和[90,100]的學生中選兩人,求他們在同一分數(shù)段的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com