若滿足條件
x-y+2≥0
x+y-2≥0
kx-y-2k+1≥0
的點P(x,y)構成三角形區(qū)域,則實數(shù)k的取值范圍是
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,根據(jù)平面區(qū)域是三角形,即可確定k的取值范圍.
解答: 解:作出不等式組
x-y+2≥0
x+y-2≥0
kx-y-2k+1≥0
對應的平面區(qū)域
直線kx-y-2k+1=0得k(x-2)+1-y=0,則直線過定點(2,1),
當直線k(x-2)+1-y=0與x+y-2=0平行時,即k=-1時,此時對應的平面區(qū)域不是三角形,
∴要使對應的平面區(qū)域是三角形,
則k(x-2)+1-y=0與x+y-2=0在第一象限內(nèi)相交,即k<-1,
故答案為:(-∞,-1).
點評:本題主要考查線性規(guī)劃的應用,利用數(shù)形結合是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的S值為( 。
A、2B、-2C、4D、-4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知冪函數(shù)y=f(x)的圖象過點(
1
3
3
3
),則f(4)的值為(  )
A、-2
B、2
C、-
1
4
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長AO到D點,則△ABD的面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知P是圓O外一點,PA為圓O的切線,A為切點.割線PBC經(jīng)過圓心O,若PA=3
3
,PC=9,則∠ACP=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理)如圖,四棱錐P-ABCD的底面ABCD是圓內(nèi)接四邊形(記此圓為W),PA⊥平面ABCD,PA=BD=2,AD=CD=
3

(1)當AC是圓W的直徑時,求證:平面PBC⊥平面PAB;
(2)當BD是圓W的直徑時,求二面角A-PD-C的余弦值;
(3)在(2)的條件下,判斷棱PA上是否存在一點Q,使得BQ∥平面PCD?若存在,求出AQ的長,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sinxcosx+cos2x(x∈R).
(1)求f(x)的最小正周期和最大值;
(2)若f(
π
24
)=
2
sinA,其中A是面積為
3
3
2
的銳角△ABC的內(nèi)角,且AB=2,求邊AC和BC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sinx[a•sin(x+
π
2
)+
1
2
sinx]-
1
2
(x∈R)的圖象關于直線x=
π
3
對稱.求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式組
y-x≥0
y-kx-1≤0
x≥0
表示的平面區(qū)域的面積等于拋物線y=-x2+1與x軸圍成的封閉區(qū)域的面積,則k=
 

查看答案和解析>>

同步練習冊答案