如圖△為直角三角形,,以為直徑的圓交于點,點邊的中點,連交圓于點

(Ⅰ)求證:、、四點共圓;
(Ⅱ)設(shè),,求的長.

(1)(1)做出輔助線,首先證明兩個三角形全等,根據(jù)三角形三邊對應(yīng)相等,得到兩個三角形全等,得到對應(yīng)角相等,從而得到四邊形一對對角互補(bǔ),即四點共圓.
(2)5

解析試題分析:(1)證明:連結(jié)OE,BE
∵AB為圓O直徑    ∴BE⊥AE
OB=OE      ∴∠BEO=∠OBE
Rt△BEC中    D為BC中點      ∴BD=DE   ∠BED=∠DBE
∠OED=∠BEO+∠BED=∠OBE+∠DBE=∠OBD=∠ABD=90°
∠OED+∠OBD=180°
∴O、B、D、E四點共圓               5分
(II)解:延長DO交圓于H, O、D分別為AB、AC中點
OD=AC=3      MH=AB=4    DM=1
由(I)OE⊥DE    E為圓上    ∴DE為圓O切線
DE2=DM·DH=1·(4+1)=5                 10分
考點:三角形全等,四點共圓
點評:本題考查三角形全等,考查四點共圓,考查圓的切割線定理,是一個平面幾何的綜合題目,解題時注意分析要證明的結(jié)論與條件之間的關(guān)系

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知⊙O的半徑為1,MN是⊙O的直徑,過M點作⊙O的切線AM,C是AM的中點,AN交⊙O于B點,若四邊形BCON是平行四邊形.

(Ⅰ)求AM的長;
(Ⅱ)求sin∠ANC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形的外接圓為⊙是⊙的切線,的延長線與相交于點
求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,圓與圓內(nèi)切于點,其半徑分別為,圓的弦交圓于點不在上),求證:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖AB為圓O直徑,P為圓O外一點,過P點作PC⊥AB,
垂是為C,PC交圓O于D點,PA交圓O于E點,BE交PC于F點。

(I)求證:∠PFE=∠PAB;
(II)求證:CD2=CF·CP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形是圓內(nèi)接四邊形,延長與的延長線交于點,且, .

(1)求證:
(2)當(dāng)時,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形是☉的內(nèi)接四邊形,不經(jīng)過點平分,經(jīng)過點的直線分別交的延長線于點,且,證明:

(1);
(2)是☉的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知為銳角△的內(nèi)心,且,點為內(nèi)切圓與邊的切點,過點作直線的垂線,垂足為

(1)求證:;
(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)選修4—1: 幾何證明選講
如圖,直線經(jīng)過⊙O上一點,且,,⊙O交直線.

(1)求證:直線是⊙O的切線;
(2)若⊙O的半徑為3,求的長.

查看答案和解析>>

同步練習(xí)冊答案