已知,,其中是自然常數(shù)).
(Ⅰ)求的單調(diào)性和極小值;
(Ⅱ)求證:上單調(diào)遞增;
(Ⅲ)求證:.

(Ⅰ)當(dāng)時,,此時單調(diào)遞減當(dāng)時,,此時單調(diào)遞增 ∴的極小值為 
(Ⅱ)當(dāng)時,,上單調(diào)遞增  
(Ⅲ)略

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

若非零函數(shù)對任意實數(shù)均有,且當(dāng)時, ;
(1)求證:         (2)求證:為減函數(shù)
(3)當(dāng)時,解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)若,且滿足
⑴求的值;
⑵若,,求的值。                                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè),當(dāng)時,對應(yīng)值的集合為.
(1)求的值;(2)若,求該函數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),判斷上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分) 若二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象關(guān)于y軸對稱,
且f(-2)>f(3),設(shè)m>-n>0.
(1) 試證明函數(shù)f(x)在(0,+∞)上是減函數(shù);
(2) 試比較f(m)和f(n)的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分16分)
已知函數(shù)∈R且),.
(Ⅰ)若,且函數(shù)的值域為[0, +),求的解析式;
(Ⅱ)在(Ⅰ)的條件下,當(dāng)x∈[-2 , 2 ]時,是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(Ⅲ)設(shè),, 且是偶函數(shù),判斷是否大于零?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知二次函數(shù)滿足條件,及.
(1)求的解析式;(2)求上的最大和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)已知二次函數(shù)的圖象過點(1,13),
且函數(shù)是偶函數(shù).
(1)求的解析式;
(2)已知,,求函數(shù)在[,2]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案