【題目】下列各函數(shù)在其定義域中,既是奇函數(shù),又是增函數(shù)的是( )
A.y=x+1
B.y=﹣x3
C.y=﹣
D.y=x|x|
【答案】D
【解析】解:A.根據(jù)y=x+1的圖象知該函數(shù)不是奇函數(shù),∴該選項(xiàng)錯(cuò)誤; B.x增大時(shí),﹣x3減小,即y減小,∴y=﹣x3為減函數(shù),∴該選項(xiàng)錯(cuò)誤;
C. 在定義域上沒有單調(diào)性,∴該選項(xiàng)錯(cuò)誤;
D.y=x|x|為奇函數(shù), ;
y=x2在[0,+∞)上單調(diào)遞增,y=﹣x2在(﹣∞,0)上單調(diào)遞增,且y=x2與y=﹣x2在x=0處都為0;
∴y=x|x|在定義域R上是增函數(shù),即該選項(xiàng)正確.
故選:D.
根據(jù)奇函數(shù)圖象的特點(diǎn),減函數(shù)的定義,反比例函數(shù)在定義域上的單調(diào)性,奇函數(shù)的定義,二次函數(shù)的單調(diào)性便可判斷每個(gè)選項(xiàng)的正誤,從而找到正確選項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù).
(1)當(dāng)時(shí), ,若當(dāng)時(shí), 恒成立,求的最小值;
(2)若的圖像關(guān)于對稱,且時(shí), ,求當(dāng)時(shí), 的解析式;
(3)當(dāng)時(shí), .若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓和直線: ,橢圓的離心率,坐標(biāo)原點(diǎn)到直線的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知定點(diǎn),若直線過點(diǎn)且與橢圓相交于兩點(diǎn),試判斷是否存在直線,使以為直徑的圓過點(diǎn)?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極大值;
(2)若函數(shù)在區(qū)間 其中上存在極值,求實(shí)數(shù)的取值范圍;
(3)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是正四面體的平面展開圖,G,H,M,N分別為DE,BE,EF,EC的中點(diǎn),在這個(gè)正四面體中,
①GH與EF平行;②BD與MN為異面直線;③GH與MN成60°角;④DE與MN垂直.以上四個(gè)命題中,正確命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)若在點(diǎn)處的切線斜率為,求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若,求證:在時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面是邊長為 的正方形,AA1=3,點(diǎn)F在棱B1B上運(yùn)動(dòng).
(1)若三棱錐B1﹣A1D1F的體積為 時(shí),求異面直線AD與D1F所成的角
(2)求異面直線AC與D1F所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將一張紙沿直線l對折一次后,點(diǎn)A(0,4)與點(diǎn)B(8,0)重疊,點(diǎn)C(6,8)與點(diǎn)D(m,n)重疊.
(1)求直線l的方程;
(2)求m+n的值;
(3)直線l上是否存在一點(diǎn)P,使得||PB|﹣|PC||存在最大值,如果存在,請求出最大值,以及此時(shí)點(diǎn)P的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出的普通方程和的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在上,點(diǎn)在上,求的最小值及此時(shí)的直角坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com