【題目】將一張紙沿直線l對折一次后,點A(0,4)與點B(8,0)重疊,點C(6,8)與點D(m,n)重疊.
(1)求直線l的方程;
(2)求m+n的值;
(3)直線l上是否存在一點P,使得||PB|﹣|PC||存在最大值,如果存在,請求出最大值,以及此時點P的坐標(biāo);如果不存在,請說明理由.

【答案】
(1)解:設(shè)線段AB的中點為N,則點N(4,2),且

則直線l的方程為2x﹣y﹣6=0


(2)解:設(shè)直線CD的方程為x+2y+C'=0

∵C(6,8)在直線CD上,∴C'=﹣22,則直線CD的方程為x+2y﹣22=0

設(shè)直線CD與直線l的交點為M,

,∴


(3)解:假設(shè)直線l上存在點P,

∵||PB|﹣|PC||=||PA|﹣|PC||≥|AC|

當(dāng)且僅當(dāng)P,A,C三點共線時,等號成立

直線AC的方程為x﹣3y+12=0

,∴P(6,6)


【解析】(1)設(shè)線段AB的中點為N,則點N(4,2),且 ,即可求出直線l的方程;(2)求出直線CD的方程,可得直線CD與直線l的交點坐標(biāo),即可求m+n的值;(3)假設(shè)直線l上存在點P,利用||PB|﹣|PC||=||PA|﹣|PC||≥|AC|,得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們把b除a的余數(shù)r記為r=abmodb,例如4=9bmod5,如圖所示,若輸入a=209,b=77,則循環(huán)體“r←abmodb”被執(zhí)行了次.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列各函數(shù)在其定義域中,既是奇函數(shù),又是增函數(shù)的是(
A.y=x+1
B.y=﹣x3
C.y=﹣
D.y=x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若Ai(i=1,2,3,…,n)是△AOB所在平面內(nèi)的點,且 = ,給出下列說法:
·(1)| |=| |=| |=…=| |
·(2)| |的最小值一定是| |
·(3)點A和點Ai一定共線
·(4)向量 在向量 方向上的投影必定相等
其中正確的個數(shù)是(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=lg(3﹣4x+x2)的定義域為M,當(dāng)x∈M時,則f(x)=2x+2﹣3×4x的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有三個不同的零點, (其中),則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)定義在R上的奇函數(shù),且在(﹣∞,0)上是增函數(shù),又f(2)=0,則不等式xf(x+1)<0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),在處取得極值.

1)求函數(shù)的解析式;

2)求函數(shù)上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式x2﹣ax+b<0的解集為(1,2),則不等式 的解集為(
A.( ,+∞)
B.(﹣∞,0)∪( ,+∞)
C.( ,+∞)
D.(﹣∞,0)∪( ,+∞)

查看答案和解析>>

同步練習(xí)冊答案