【題目】銳角是第幾象限角?第一象限角一定是銳角嗎?再分別就直角、鈍角來回答這兩個問題.
【答案】銳角是第一象角,第一象限角不一定是銳角;直角為終邊在坐標(biāo)軸上的角(不屬于任何象限),但終邊在坐標(biāo)軸上的角不一定為直角;鈍角為第二象角,但第二象角不一定為鈍角.
【解析】
銳角是第一象角,第一象限角可以是銳角加的整數(shù)倍,所以不一定是銳角;直角為終邊在坐標(biāo)軸上的角(不屬于任何象限),但終邊在坐標(biāo)軸上的角不一定為直角,如;鈍角為第二象角,但第二象角不一定為鈍角.
銳角,是第一象限角,是第一象限角不是銳角;
直角的終邊在坐標(biāo)軸上(不屬于任何象限),但終邊在坐標(biāo)軸上的角不一定為直角,如;
鈍角是第二象限角,是第二象限角,但不是鈍角,
所以銳角是第一象角,第一象限角不一定是銳角;直角為終邊在坐標(biāo)軸上的角(不屬于任何象限),但終邊在坐標(biāo)軸上的角不一定為直角;鈍角為第二象角,但第二象角不一定為鈍角.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)在第年年初購買一臺價值為萬元的設(shè)備,的價值在使用過程中逐年減少從第年到第年,每年年初的價值比上年年初減少萬元;從第年開始,每年年初的價值為上年年初的.
(1)求第年年初的價值的表達式.
(2)設(shè),若大于萬,則繼續(xù)使用;否則,必須在第年年初對更新.
①求;
②證明:必須在第年年初對更新.(若是遞減數(shù)列,也是遞減數(shù)列).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,且
()求數(shù)列的通項公式;
()若數(shù)列滿足,求數(shù)列的通項公式;
()在()的條件下,設(shè),問是否存在實數(shù)使得數(shù)列是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:(a>0),過點P(-2,-4)的直線l的參數(shù)方程為(t為參數(shù)),l與C分別交于M,N.
(1)寫出C的平面直角坐標(biāo)系方程和l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“微信運動”是手機推出的多款健康運動軟件中的一款,楊老師的微信朋友圈內(nèi)有位好友參與了“微信運動”,他隨機選取了位微信好友(女人,男人),統(tǒng)計其在某一天的走路步數(shù).其中,女性好友的走路步數(shù)數(shù)據(jù)記錄如下:
5860 8520 7326 6798 7325 8430 3216 7453 11754 9860
8753 6450 7290 4850 10223 9763 7988 9176 6421 5980
男性好友走路的步數(shù)情況可分為五個類別: 步)(說明:“”表示大于等于,小于等于.下同), 步), 步), 步), 步及以),且三種類別人數(shù)比例為,將統(tǒng)計結(jié)果繪制如圖所示的條形圖.
若某人一天的走路步數(shù)超過步被系統(tǒng)認定為“衛(wèi)健型",否則被系統(tǒng)認定為“進步型”.
(1)若以楊老師選取的好友當(dāng)天行走步數(shù)的頻率分布來估計所有微信好友每日走路步數(shù)的概率分布,請估計楊老師的微信好友圈里參與“微信運動”的名好友中,每天走路步數(shù)在步的人數(shù);
(2)請根據(jù)選取的樣本數(shù)據(jù)完成下面的列聯(lián)表并據(jù)此判斷能否有以上的把握認定“認定類型”與“性別”有關(guān)?
衛(wèi)健型 | 進步型 | 總計 | |
男 | 20 | ||
女 | 20 | ||
總計 | 40 |
(3)若從楊老師當(dāng)天選取的步數(shù)大于10000的好友中按男女比例分層選取人進行身體狀況調(diào)查,然后再從這位好友中選取人進行訪談,求至少有一位女性好友的概率.
附: ,
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面上動點到點的距離與到直線的距離之比為,記動點的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)是曲線上的動點,直線的方程為.
①設(shè)直線與圓交于不同兩點, ,求的取值范圍;
②求與動直線恒相切的定橢圓的方程;并探究:若是曲線: 上的動點,是否存在直線: 恒相切的定曲線?若存在,直接寫出曲線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2017年的自主招生考試成績中隨機抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如下:
組號 | 分組 | 頻率 |
第1組 | [160,165) | 0.05 |
第2組 | [165,170) | 0.35 |
第3組 | [170,175) | ① |
第4組 | [175,180) | 0.20 |
第5組 | [180,185] | 0.10 |
(1)請先求出頻率分布表中①處應(yīng)填寫的數(shù)據(jù),并完成如圖所示的頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3,4,5組中用分層抽樣的方法抽取6名學(xué)生進入第二輪面試,求第3,4,5組每組各應(yīng)抽取多少名學(xué)生進入第二輪面試.
(3)根據(jù)直方圖估計這次自主招生考試筆試成績的平均數(shù)和中位數(shù);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com