【題目】某高校在2017年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如下:
組號 | 分組 | 頻率 |
第1組 | [160,165) | 0.05 |
第2組 | [165,170) | 0.35 |
第3組 | [170,175) | ① |
第4組 | [175,180) | 0.20 |
第5組 | [180,185] | 0.10 |
(1)請先求出頻率分布表中①處應(yīng)填寫的數(shù)據(jù),并完成如圖所示的頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3,4,5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,求第3,4,5組每組各應(yīng)抽取多少名學(xué)生進(jìn)入第二輪面試.
(3)根據(jù)直方圖估計這次自主招生考試筆試成績的平均數(shù)和中位數(shù);
【答案】(1)見解析;(2) 3組應(yīng)抽取3人,4組應(yīng)抽取2人,5組應(yīng)抽取1人。(3) 平均數(shù)172.25;中位數(shù)為170.1
【解析】
(1)根據(jù)頻率和為1,可得①;(2)求出第3,4,5組共有60學(xué)生,所以利用分層抽樣在60名學(xué)生中抽取6名,得到第3,4,5組分別抽取的人數(shù);(3)平均數(shù)的估計值等于頻率分布直方圖中每個小矩形的面積乘以小矩形底邊終點的橫坐標(biāo)之和,頻率分布直方圖,中位數(shù)左邊和右邊的直方圖的面積相等,可得。
解:(1)由,
(2)第3組的人數(shù)為,第4組人數(shù)為,第5組人數(shù)為,共計60 人,用分層抽樣抽取6人。則第3組應(yīng)抽取人數(shù)為,第4組應(yīng)抽取人數(shù)為,第5組應(yīng)抽取人數(shù)為。
(3)平均數(shù),由圖,第1,2兩組的頻率和為0.4,第3組的頻率為0.3,所以中位數(shù)落在第3組,設(shè)中位數(shù)距離170為x,則,解得,故筆試成績的中位數(shù)為。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為圓上一動點,圓心關(guān)于軸的對稱點為,點分別是線段上的點,且.
(1)求點的軌跡方程;
(2)直線與點的軌跡只有一個公共點,且點在第二象限,過坐標(biāo)原點且與垂直的直線與圓相交于兩點,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若有兩個極值點,記過點的直線的斜率為,問:是否存在實數(shù),使得,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率是,過點的動直線與橢圓相交于兩點,當(dāng)直線與軸平行時,直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在異于點的定點,使得直線變化時,總有?若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列滿足,其中,且為常數(shù).
(1)若是等差數(shù)列,且公差,求的值;
(2)若,且數(shù)列滿足對任意的都成立.
①求數(shù)列的前項之和;
②若對任意的都成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的左焦點為,左準(zhǔn)線方程為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知直線交橢圓于, 兩點.
①若直線經(jīng)過橢圓的左焦點,交軸于點,且滿足, .求證: 為定值;
②若(為原點),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2﹣4x=0.
(1)直線l的方程為,直線l交圓C于A、B兩點,求弦長|AB|的值;
(2)從圓C外一點P(4,4)引圓C的切線,求此切線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com