【題目】已知函數(shù)f(x)滿足f(xy)=f(xf(y),且f(1)=.

(1)當(dāng)nN,求f(n)的表達(dá)式;

(2)設(shè)annf(n),nN,求證:a1a2+…+an<2.

【答案】(1)(2)見解析

【解析】

(1)利用f(x+y)=f(x)f(y)(x,yR)通過令x=n,y=1,說明{f(n)}是以f(1)=為首項,公比為的等比數(shù)列求出;(2)利用(1)求出an=nf(n)的表達(dá)式,利用錯位相減法求出數(shù)列的前n項和,即可說明不等式成立.

(1)解:f(n)=f[(n-1)+1]

f(n-1)·f(1)=f(n-1).

∴當(dāng)n≥2時,.

f(1)=,

∴數(shù)列{f(n)}是首項為,公比為的等比數(shù)列,

f(n)=f(1)·()n1=()n.

(2)證明(1)可知,

ann·()nn·,

設(shè)Sna1a2+…+an,

Sn+2×+3×+…+(n-1)·n·

Sn+2×+…+(n-2)·+(n-1)·n·.

②得,

Sn+…+n·

=1-,

Sn=2-<2.

a1a2+…+an<2.

【點睛】

本題考查數(shù)列與函數(shù)的關(guān)系,數(shù)列通項公式的求法和的求法,考查不等式的證明,裂項法與錯位相減法的應(yīng)用,數(shù)列通項的求法中有常見的已知的關(guān)系,求表達(dá)式,一般是寫出做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數(shù)列求和常用法有:錯位相減,裂項求和,分組求和等.

型】解答
結(jié)束】
22

【題目】設(shè)數(shù)列{an}的前n項和為Sn.已知a1a (a≠3),an1Sn+3n,nN.

(1)設(shè)bnSn-3n,求數(shù)列{bn}的通項公式;

(2)an1an,nN,求a的取值范圍.

【答案】(1)bn= (a-3)2n1(2)[-9,+∞).

【解析】

Ⅰ)由題意可知bnSn-3nSn+1Snan+1Sn+3n,即Sn+1=2Sn+3n,得Sn+1-3n+1=2(Sn-3n),bn+1=2bn,則{bn}是首項是a﹣3,公比為2的等比數(shù)列,即可求得數(shù)列{bn}的通項公式;(Ⅱ先求得數(shù)列an通項an=2×3n-1+(a-3)2n-2,將數(shù)列表達(dá)式代入不等式an+1an,得到a≥3-12·()n-2根據(jù)指數(shù)的單調(diào)性得到a的范圍.

(1)依題意,Sn1Snan1Sn+3n

Sn1=2Sn+3n,

由此得Sn1-3n1=2(Sn-3n),即{Sn-3n}是以a-3為首項,以2為公比的等比數(shù)列.

因此,所求通項公式為bnSn-3n=(a-3)2n1,nN.

(2)由①知Sn=3n+(a-3)2n1,nN,

于是,當(dāng)n≥2時,anSnSn1

=3n+(a-3)×2n1-3n1-(a-3)×2n2

=2×3n1+(a-3)2n2,

an1an=4×3n1+(a-3)2n2

=2n2[12·()n2a-3],

當(dāng)n≥2時,an1an12·()n2a-3≥0

a≥3-12·()n2a≥-9.

a2a1+3>a1

綜上,所求的a的取值范圍是[-9,+∞).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某村計劃建造一個室內(nèi)面積為800平米的矩形蔬菜溫室,在溫室內(nèi)沿左右兩側(cè)與后墻內(nèi)側(cè)各保留1米的通道,沿前側(cè)內(nèi)墻保留3米寬的空地,當(dāng)矩形溫室的邊長各為多少時,蔬菜的種植面積最大?最大的種植面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是函數(shù)的反函數(shù),函數(shù)的圖像關(guān)于直線對稱,記.

1)求函數(shù)的解析式和定義域﹔

2)在的圖像上是否存在這樣兩個不同點A,B,使直線AB恰好與y軸垂直?若存在,求A,B的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M是滿足下列性制的函數(shù)f(x)的全體,存在實數(shù)a、k(k≠0),對于定義域內(nèi)的任意x均有f(a+x)=kf(a﹣x)成立,稱數(shù)對(a,k)為函數(shù)f(x)的“伴隨數(shù)對”.
(1)判斷f(x)=x2是否屬于集合M,并說明理由;
(2)若函數(shù)f(x)=sinx∈M,求滿足條件的函數(shù)f(x)的所有“伴隨數(shù)對”;
(3)若(1,1),(2,﹣1)都是函數(shù)f(x)的“伴隨數(shù)對”,當(dāng)1≤x<2時,f(x)=cos( x);當(dāng)x=2時,f(x)=0,求當(dāng)2014≤x≤2016時,函數(shù)y=f(x)的解析式和零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x=3是函數(shù)f(x)=aln(1+x)+x2﹣10x的一個極值點.
(Ⅰ)求a;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若直線y=b與函數(shù)y=f(x)的圖象有3個交點,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,其中a,b,c∈R.
(1)若a=b=c=1,求f(x)的單調(diào)區(qū)間;
(2)若b=c=1,且當(dāng)x≥0時,f(x)≥1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)選修44,坐標(biāo)系與參數(shù)方程

已知曲線,直線為參數(shù)).

I)寫出曲線的參數(shù)方程,直線的普通方程;

II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=2|x+1|﹣|x﹣1|.
(1)畫出函數(shù)f(x)的圖象;
(2)解不等式|f(x)|>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a∈R,函數(shù)f(x)=x|x﹣a|﹣a.
(1)若f(x)為奇函數(shù),求a的值;
(2)若對任意的x∈[2,3],f(x)≥0恒成立,求a的取值范圍;
(3)當(dāng)a>4時,求函數(shù)y=f(f(x)+a)零點的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案