【題目】某村計(jì)劃建造一個(gè)室內(nèi)面積為800平米的矩形蔬菜溫室,在溫室內(nèi)沿左右兩側(cè)與后墻內(nèi)側(cè)各保留1米的通道,沿前側(cè)內(nèi)墻保留3米寬的空地,當(dāng)矩形溫室的邊長(zhǎng)各為多少時(shí),蔬菜的種植面積最大?最大的種植面積是多少?

【答案】當(dāng)矩形溫室的左側(cè)邊長(zhǎng)為40m,后側(cè)邊長(zhǎng)為20m時(shí),花卉種植面積達(dá)到最大,最大面積為648

【解析】

解:設(shè)溫室的邊長(zhǎng)分別為:xy

則:………………………………………………………………………………1分)

,………………………………………………………3分)

……………………………………………………………………4分)

≥2

當(dāng)且僅當(dāng)時(shí),等號(hào)成立

≤648…………………………………………………………………………………6分)

此時(shí),最大的種植面積為:648m2………………………………………………8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)f(x)=sin(x+ )圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 倍(縱坐標(biāo)不變),再把得到的圖象向右平移 個(gè)單位,得到的新圖象的函數(shù)解析式為g(x)= , g(x)的單調(diào)遞減區(qū)間是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)F,C上一點(diǎn)到焦點(diǎn)的距離為5.

(1)求C的方程;

(2)過(guò)F作直線l,交CA,B兩點(diǎn),若直線AB中點(diǎn)的縱坐標(biāo)為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)是定義在(﹣44)上的奇函數(shù),滿足f2)=1,當(dāng)﹣4x≤0時(shí),有fx)=

1)求實(shí)數(shù)a,b的值;

2)若fm+1+>0.求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)P={ },Q={ } ,,

(1);

(2)若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣mx(m∈R).
(1)若曲線y=f(x)過(guò)點(diǎn)P(1,﹣1),求曲線y=f(x)在點(diǎn)P處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[1,e]上的最大值;
(3)若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1 , x2 , 求證:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半徑為1的半圓O與等邊三角形ABC夾在兩平行線l1 , l2之間,l∥l1 , l與半圓相交于F,G兩點(diǎn),與三角形ABC兩邊相交于E,D兩點(diǎn).設(shè)弧 的長(zhǎng)為x(0<x<π),y=EB+BC+CD,若l從l1平行移動(dòng)到l2 , 則函數(shù)y=f(x)的圖象大致是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行下面的程序框圖,如果輸入的,則輸出的( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)滿足f(xy)=f(xf(y),且f(1)=.

(1)當(dāng)nN,求f(n)的表達(dá)式;

(2)設(shè)annf(n),nN,求證:a1a2+…+an<2.

【答案】(1)(2)見(jiàn)解析

【解析】

(1)利用f(x+y)=f(x)f(y)(x,yR)通過(guò)令x=n,y=1,說(shuō)明{f(n)}是以f(1)=為首項(xiàng),公比為的等比數(shù)列求出;(2)利用(1)求出an=nf(n)的表達(dá)式,利用錯(cuò)位相減法求出數(shù)列的前n項(xiàng)和,即可說(shuō)明不等式成立.

(1)解:f(n)=f[(n-1)+1]

f(n-1)·f(1)=f(n-1).

∴當(dāng)n≥2時(shí),.

f(1)=,

∴數(shù)列{f(n)}是首項(xiàng)為,公比為的等比數(shù)列,

f(n)=f(1)·()n1=()n.

(2)證明(1)可知,

ann·()nn·,

設(shè)Sna1a2+…+an,

Sn+2×+3×+…+(n-1)·n·

Sn+2×+…+(n-2)·+(n-1)·n·.

②得,

Sn+…+n·

=1-,

Sn=2-<2.

a1a2+…+an<2.

【點(diǎn)睛】

本題考查數(shù)列與函數(shù)的關(guān)系,數(shù)列通項(xiàng)公式的求法和的求法,考查不等式的證明,裂項(xiàng)法與錯(cuò)位相減法的應(yīng)用,數(shù)列通項(xiàng)的求法中有常見(jiàn)的已知的關(guān)系,求表達(dá)式,一般是寫出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用;數(shù)列求和常用法有:錯(cuò)位相減,裂項(xiàng)求和,分組求和等.

型】解答
結(jié)束】
22

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知a1a (a≠3),an1Sn+3n,nN.

(1)設(shè)bnSn-3n,求數(shù)列{bn}的通項(xiàng)公式;

(2)an1an,nN,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案