【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S3=9,a2a4=21,數(shù)列{bn}滿足 ,若 ,則n的最小值為(
A.6
B.7
C.8
D.9

【答案】C
【解析】解:設(shè)等差數(shù)列{an}的公差為d,∵S3=9,a2a4=21,∴3a1+ d=9,(a1+d)(a1+3d)=21,
聯(lián)立解得:a1=1,d=2.
∴an=1+2(n﹣1)=2n﹣1.
∵數(shù)列{bn}滿足
∴n=1時, =1﹣ ,解得b1=
n≥2時, +…+ =1﹣ ,
=
∴bn=
,則
n=7時,
n=8時,
因此: ,則n的最小值為8.
故選:C.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等差數(shù)列的通項(xiàng)公式(及其變式)(通項(xiàng)公式:).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校調(diào)查了200名學(xué)生每周的自習(xí)時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習(xí)時間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,若這200名學(xué)生中每周的自習(xí)時間不超過m小時的人數(shù)為164,則m的值約為(
A.26.25
B.26.5
C.26.75
D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ln(ax+b)+x2(a≠0).
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=x,求a,b的值;
(2)若f(x)≤x2+x恒成立,求ab的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】宿州市某登山愛好者為了解山高y(百米)與氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計了4次山高與相應(yīng)的氣溫,并制作了對照表,由表中數(shù)據(jù),得到線性回歸方程為y=﹣2x+a,由此估計山高為72(百米)處的氣溫為(

氣溫x(℃)

18

13

10

﹣1

山高y(百米)

24

34

38

64


A.﹣10
B.﹣8
C.﹣6
D.﹣4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車進(jìn)駐城市,綠色出行引領(lǐng)時尚,某市有統(tǒng)計數(shù)據(jù)顯示,2016年該市共享單車用戶年齡等級分布如圖1所示,一周內(nèi)市民使用單車的頻率分布扇形圖如圖2所示,若將共享單車用戶按照年齡分為“年輕人”(20歲~39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類,將一周內(nèi)使用的次數(shù)為6次或6次以上的稱為“經(jīng)常使用單車用戶”,使用次數(shù)為5次或不足5次的稱為“不常使用單車用戶”,已知在“經(jīng)常使用單車用戶”中有 是“年輕人”.
(Ⅰ)現(xiàn)對該市市民進(jìn)行“經(jīng)常使用共享單車與年齡關(guān)系”的調(diào)查,采用隨機(jī)抽樣的方法,抽取一個容量為200的樣本,請你根據(jù)圖表中的數(shù)據(jù),補(bǔ)全下列2×2列聯(lián)表,并根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),判斷能有多大把握可以認(rèn)為經(jīng)常使用共享單車與年齡有關(guān)?
使用共享單車情況與年齡列聯(lián)表

年輕人

非年輕人

合計

經(jīng)常使用共享單車用戶

120

不常使用共享單車用戶

80

合計

160

40

200

(Ⅱ)將頻率視為概率,若從該市市民中隨機(jī)任取3人,設(shè)其中經(jīng)常使用共享單車的“非年輕人”人數(shù)為隨機(jī)變量X,求X的分布列與期望.
(參考數(shù)據(jù):

P(K2≥k0

0.15

0.10

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

其中,K2= ,n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和記為Sn , a1=t,an+1=2Sn+1(n∈N*).
(1)當(dāng)t為何值時,數(shù)列{an}為等比數(shù)列?
(2)在(1)的條件下,若等差數(shù)列{bn}的前n項(xiàng)和Tn有最大值,且T3=15,又a1+b1 , a2+b2 , a3+b3成等比數(shù)列,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在R上的偶函數(shù)y=f(x),滿足對任意t∈R都有f(t)=f(2﹣t),且x∈(0,1]時,f(x)= ,a=f( ),b=f( ),c=f( ),則(
A.b<c<a
B.a<b<c
C.c<a<b
D.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)=x3﹣ax2+1在(1,3)內(nèi)單調(diào)遞減,則實(shí)數(shù)a的范圍是(
A.[ ,+∞)
B.(﹣∞,3]
C.(3,
D.(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知m>0,n>0, +mn的最小值為t.
(1)求t值
(2)解關(guān)于x的不等式|x﹣1|<t+2x.

查看答案和解析>>

同步練習(xí)冊答案