【題目】某高校調(diào)查了200名學生每周的自習時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習時間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,若這200名學生中每周的自習時間不超過m小時的人數(shù)為164,則m的值約為( )
A.26.25
B.26.5
C.26.75
D.27
【答案】B
【解析】解:因為200名學生中每周的自習時間不超過m小時的人數(shù)為164,
則自習時間不超過m小時的頻率為: =0.82,
第一組的頻率為0.05,第二組的頻率為0.25,第三組的頻率為0.4,第四組的頻率為0.2,第五組的頻率為0.1,
其中前三組的頻率之和0.05+0.25+0.4=0.7,其中前四組的頻率之和0.7+0.2=0.9,
則0.82落在第四組,m=25+ ×2.5=26.5
故選:B.
【考點精析】利用頻率分布直方圖對題目進行判斷即可得到答案,需要熟知頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.
科目:高中數(shù)學 來源: 題型:
【題目】正三棱柱ABC﹣A1B1C1底邊長為2,E,F(xiàn)分別為BB1 , AB的中點. (I)已知M為線段B1A1上的點,且B1A1=4B1M,求證:EM∥面A1FC;
(II)若二面角E﹣A1C﹣F所成角的余弦值為 ,求AA1的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且bcosC=(3a﹣c)cosB.D為AC邊的中點,且BD=1,則△ABD面積的最大值為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx+x2﹣2ax(a>0). (I)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1 , x2(x1<x2),且f(x1)﹣f(x2)≥ ﹣2ln2恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知幾何體ABCDEF中,AB∥CD,AD⊥DC,EA⊥平面ABCD,F(xiàn)C∥EA,AB=AD=EA=1,CD=CF=2.
(Ⅰ)求證:平面EBD⊥平面BCF;
(Ⅱ)求點B到平面ECD的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,A1A⊥底面ABCD,四邊形ABCD為梯形,AD∥BC,且AD=2BC,Q為BB1的中點,過A1 , Q,D三點的平面記為α.
(1)證明:平面α與平面A1B1C1D1的交線平行于直線CD;
(2)若AA1=3,BC=CD= ,∠BCD=120°,求平面α與底面ABCD所成二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《數(shù)學九章》中對已知三角形三邊長求三角形的面積的求法填補了我國傳統(tǒng)數(shù)學的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數(shù)學水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.”若把以上這段文字寫成公式,即S= .現(xiàn)有周長為2 + 的△ABC滿足sinA:sinB:sinC=( ﹣1): :( +1),試用以上給出的公式求得△ABC的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(ax﹣1)e2x+x+1(其中e為自然對數(shù)的e底數(shù)).
(1)若a=0,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)對x∈(0,+∞),f(x)>0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項和為Sn , 且S3=9,a2a4=21,數(shù)列{bn}滿足 ,若 ,則n的最小值為( )
A.6
B.7
C.8
D.9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com