【題目】如圖,互相垂直的兩條公路AP、AQ旁有一矩形花園ABCD,現(xiàn)欲將其擴(kuò)建成一個(gè)更大的三角形花園AMN,要求點(diǎn)M在射線AP上,點(diǎn)N在射線AQ上,且直線MN過(guò)點(diǎn)C,其中AB=36米,AD=20米.記三角形花園AMN的面積為S. (Ⅰ)問(wèn):DN取何值時(shí),S取得最小值,并求出最小值;
(Ⅱ)若S不超過(guò)1764平方米,求DN長(zhǎng)的取值范圍.
【答案】解:(Ⅰ)設(shè)DN=x米(x>0),則AN=x+20. 因?yàn)镈C∥AB,所以△NDC∽△NAM
所以 ,
所以 ,即 .
所以
= ,當(dāng)且僅當(dāng)x=20時(shí)取等號(hào).
所以,S的最小值等于1440平方米.
(Ⅱ)由 得x2﹣58x+400≤0.
解得8≤x≤50.
所以,DN長(zhǎng)的取值范圍是[8,50]
【解析】(Ⅰ)由于DC∥AB得出△NDC∽△NAM,從而AN,AM用DN表示,利用三角形的面積公式表示出面積,再利用基本不等式求最值,注意等號(hào)何時(shí)取得.(Ⅱ)由S不超過(guò)1764平方米,建立不等式,從而可求DN長(zhǎng)的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線斜率為1,求函數(shù)的單調(diào)區(qū)間;
(2)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列是以2為首項(xiàng)的等差數(shù)列,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式及前項(xiàng)和;
(Ⅱ)若,求數(shù)列的前項(xiàng)之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最大值為, 的圖象關(guān)于軸對(duì)稱(chēng).
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)設(shè),是否存在區(qū)間,使得函數(shù)在區(qū)間上的值域?yàn)?/span>?若存在,求實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列4個(gè)命題
①“若,則”的否命題是“若,則”;
②若命題,則為真命題;
③“平面向量夾角為銳角,則”的逆命題為真命題;
④“函數(shù)有零點(diǎn)”是“函數(shù)在上為減函數(shù)”的充要條件.
其中正確的命題個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等差數(shù)列中, ,其前項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù), ,且, .
(1)求數(shù)列和的通項(xiàng)公式;
(2)令,設(shè)數(shù)列的前項(xiàng)和為,求()的最大值與最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com