【題目】如圖,在四棱錐中,底面是正方形,側(cè)面底面,若分別為的中點(diǎn).

)求證:平面;

)求證:平面平面

【答案】1)根據(jù)題意,證明線面平行,關(guān)鍵是先證明線線平行,即

2)對(duì)于面面垂直的證明,一般先證明線面垂直,,結(jié)合面面垂直的判定定理來(lái)得到。

【解析】

(Ⅰ)利用線面平行的判定定理,只需證明EFPA,即可.

(Ⅱ)先證明線面垂直,CD⊥平面PAD,再證明面面垂直,平面PAD⊥平面PDC即可.

)證明:連結(jié)AC,在正方形ABCD中,FBD中點(diǎn),正方形對(duì)角線互相平分,

FAC中點(diǎn),又EPC中點(diǎn),在CPA中,EFPA,且PA平面PAD,

EF平面PADEF平面PAD

平面PAD平面ABCD,平面PAD平面ABCD=AD,CDAD

平面 CD⊥平面PAD,∵CD平面PDC, ∴平面PAD⊥平面PDC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校舉辦的集體活動(dòng)中,設(shè)計(jì)了如下有獎(jiǎng)闖關(guān)游戲:參賽選手按第一關(guān)、第二關(guān)、第三關(guān)的順序依次闖關(guān),若闖關(guān)成功,分別獲得1分、2分、3分的獎(jiǎng)勵(lì),游戲還規(guī)定,當(dāng)選手闖過(guò)一關(guān)后,可以選擇得到相應(yīng)的分?jǐn)?shù),結(jié)束游戲;也可以選擇繼續(xù)闖下一關(guān),若有任何一關(guān)沒(méi)有闖關(guān)成功,則全部分?jǐn)?shù)都?xì)w零,游戲結(jié)束。設(shè)選手甲第一關(guān)、第二關(guān)、第三關(guān)的概率分別為,,,選手選擇繼續(xù)闖關(guān)的概率均為,且各關(guān)之間闖關(guān)成功互不影響

(I)求選手甲第一關(guān)闖關(guān)成功且所得分?jǐn)?shù)為零的概率

(II)設(shè)該學(xué)生所得總分?jǐn)?shù)為X,X的分布列與數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的右焦點(diǎn)為( ,0),離心率為
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若動(dòng)點(diǎn)P(x0 , y0)為橢圓C外一點(diǎn),且點(diǎn)P到橢圓C的兩條切線相互垂直,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)市場(chǎng)調(diào)查,某種商品在銷(xiāo)售中有如下關(guān)系:x(1≤x≤30,x∈N+)天的銷(xiāo)售價(jià)格(單位:/)f(x)=x天的銷(xiāo)售量(單位:)g(x)=a-x(a為常數(shù)),且在第20天該商品的銷(xiāo)售收入為1 200(銷(xiāo)售收入=銷(xiāo)售價(jià)格×銷(xiāo)售量).

(1)a的值,并求第15天該商品的銷(xiāo)售收入;

(2)求在這30天中,該商品日銷(xiāo)售收入y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2014福建)在下列向量組中,可以把向量 =(3,2)表示出來(lái)的是( )
A.=(0,0), =(1,2)
B.=(﹣1,2), =(5,﹣2)
C.=(3,5), =(6,10)
D.=(2,﹣3), =(﹣2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 所在平面互相垂直,且, 分別為AC、DC、AD的中點(diǎn)

1)求證: 平面BCG

2)求三棱錐D-BCG的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線E: =1(a>0,b>0)的兩條漸近線分別為l1:y=2x,l2:y=﹣2x.

(1)求雙曲線E的離心率;
(2)如圖,O為坐標(biāo)原點(diǎn),動(dòng)直線l分別交直線l1 , l2于A,B兩點(diǎn)(A,B分別在第一、第四象限),且△OAB的面積恒為8,試探究:是否存在總與直線l有且只有一個(gè)公共點(diǎn)的雙曲線E?若存在,求出雙曲線E的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程;

(Ⅰ)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)為曲線上的動(dòng)點(diǎn),求點(diǎn)到曲線上的距離的最小值的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案