【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程;
(Ⅰ)求曲線的普通方程和曲線的直角坐標方程;
(Ⅱ)設為曲線上的動點,求點到曲線上的距離的最小值的值.
科目:高中數(shù)學 來源: 題型:
【題目】已知 的三個頂點坐標分別為,
(1)求AC邊上的中線所在直線方程;
(2)求AB邊上的高所在直線方程;
(3)求BC邊的垂直平分線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內(nèi)角為A、B、C所對邊的長分別是a、b、c,且b=3,c=1,A=2B.
(1)求a的值;
(2)求sin(A+ )的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨機調查名性別不同的大學生是否喜歡打羽毛球,得到如下列聯(lián)表:
男 | 女 | 總計 | |
喜歡打羽毛球 | |||
不喜歡打羽毛球 | |||
總計 |
臨界值表:
參考公式:(其中)
參照臨界值表,下列結論正確的是( )
A. 在犯錯誤的概率不超過的前提下,認為“喜歡打羽毛球與性別有關”
B. 在犯錯誤的概率不超過的前提下,認為“喜歡打羽毛球與性別無關”
C. 在犯錯誤的概率不超過的前提下,認為“喜歡打羽毛球與性別有關”
D. 在犯錯誤的概率不超過的前提下,認為“喜歡打羽毛球與性別無關”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2ωx+)+sin(2ωx-)+2cos2ωx,其中ω>0,且函數(shù)f(x)的最小正周期為π
(1)求ω的值;
(2)求f(x)的單調增區(qū)間
(3)若函數(shù)g(x)=f(x)-a在區(qū)間[-,]上有兩個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓的中心為原點O,長軸在x軸上,離心率 ,過左焦點F1作x軸的垂線交橢圓于A、A′兩點,|AA′|=4.
(1)求該橢圓的標準方程;
(2)取垂直于x軸的直線與橢圓相交于不同的兩點P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點均在圓Q外.若PQ⊥P'Q,求圓Q的標準方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),(為常數(shù)).
(1)當時,判斷在的單調性,并用定義證明;
(2)若對任意,不等式恒成立,求的取值范圍;
(3)討論零點的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com