已知數(shù)列{an}的各項均為正數(shù),Sn是數(shù)列{an}的前n項和,且4Sn=an2+2an-3.
(1)求數(shù)列{an}的通項公式;
(2)已知bn=2n,求Tn=a1b1+a2b2+…+anbn的值.
分析:(1)由題意知a1=s1=
1
4
a
2
1
+
1
2
a1-
3
4
,解得a1=3,由此能夠推出數(shù)列{an}是以3為首項,2為公差的等差數(shù)列,所以an=3+2(n-1)=2n+1.
(2)由題意知Tn=3×21+5×22+…+(2n+1)•2n,2Tn=3×22+5×23+(2n-1)•2n+(2n+1)2n+1,二者相減可得到Tn=a1b1+a2b2+…+anbn的值.
解答:解:(1)當(dāng)n=1時,a1=s1=
1
4
a
2
1
+
1
2
a1-
3
4
,解出a1=3,
又4Sn=an2+2an-3①
當(dāng)n≥2時4sn-1=an-12+2an-1-3②
①-②4an=an2-an-12+2(an-an-1),即an2-an-12-2(an+an-1)=0,
∴(an+an-1)(an-an-1-2)=0,
∵an+an-1>0∴an-an-1=2(n≥2),
∴數(shù)列{an}是以3為首項,2為公差的等差數(shù)列,∴an=3+2(n-1)=2n+1.
(2)Tn=3×21+5×22+…+(2n+1)•2n
又2Tn=3×22+5×23+(2n-1)•2n+(2n+1)2n+1
④-③Tn=-3×21-2(22+23++2n)+(2n+1)2n+1-6+8-2•2n-1+(2n+1)•2n+1=(2n-1)•2n+2
點評:本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

例2.已知數(shù)列{an}的通項公式是an=
2n
3n+1
(n∈N*,n≤8)
,則下列各數(shù)是否為數(shù)列中的項?如果是,是第幾項?如果不是,為什么?(1)
3
5
(2)
11
17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西省贛縣中學(xué)2011屆高三適應(yīng)性考試數(shù)學(xué)理科試題 題型:013

已知數(shù)列{an}的通項為an=3n+8,下列各選項中的數(shù)為數(shù)列{an}中的項的是

[  ]
A.

8

B.

16

C.

32

D.

36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

例2.已知數(shù)列{an}的通項公式是數(shù)學(xué)公式,則下列各數(shù)是否為數(shù)列中的項?如果是,是第幾項?如果不是,為什么?(1)數(shù)學(xué)公式(2)數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)復(fù)習(xí)(第6章 數(shù)列):6.1 數(shù)列定義與通項(解析版) 題型:解答題

例2.已知數(shù)列{an}的通項公式是,則下列各數(shù)是否為數(shù)列中的項?如果是,是第幾項?如果不是,為什么?(1)(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知數(shù)列{an}的通項為an=3n+8,下列各選項中的數(shù)為數(shù)列{an}中的項的是


  1. A.
    8
  2. B.
    16
  3. C.
    32
  4. D.
    36

查看答案和解析>>

同步練習(xí)冊答案