如圖,曲線C由上半橢圓C1:+=1(a>b>0,y≥0)和部分拋物線C2:y=-x2+1(y≤0)連接而成,C1與C2的公共點為A,B,其中C1的離心率為.
(1)求a,b的值;
(2)過點B的直線l與C1,C2分別交于點P,Q(均異于點A,B),若AP⊥AQ,求直線l的方程.
解 (1)在C1,C2的方程中,令y=0,可得b=1,且A(-1,0),B(1,0)是上半橢圓C1的左右頂點.
設(shè)C1的半焦距為c,由=及a2-c2=b2=1得a=2.∴a=2,b=1.
(2)由(1)知,上半橢圓C1的方程為+x2=1(y≥0).
易知,直線l與x軸不重合也不垂直,設(shè)其方程為y=k(x-1)(k≠0),
代入C1的方程,整理得(k2+4)x2-2k2x+k2-4=0.(*)
設(shè)點P的坐標(biāo)為(xP,yP),
∵直線l過點B,∴x=1是方程(*)的一個根,
∵k≠0,∴k-4(k+2)=0,解得k=-.
經(jīng)檢驗,k=-符合題意,
故直線l的方程為y=-(x-1),
即8x+3y-8=0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
若圓x2+y2-2x+6y+5a=0關(guān)于直線y=x+2b成軸對稱圖形,則a-b的取值范圍是( )
A.(-∞,4) B.(-∞,0)
C.(-4,+∞) D.(4,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知圓x2+y2-6x-7=0與拋物線y2=2px(p>0)的準(zhǔn)線相切,則p的值為( )
A.1 B.2
C. D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
拋物線的頂點在原點,對稱軸為y軸,它與圓x2+y2=9相交,公共弦MN的長為2,求該拋物線的方程,并寫出它的焦點坐標(biāo)與準(zhǔn)線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
△ABC的頂點A(-5,0),B(5,0),△ABC的內(nèi)切圓圓心在直線x=3上,則頂點C的軌跡方程是( )
A.-=1
B.-=1
C.-=1(x>3)
D.-=1(x>4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知定點P(x0,y0)不在直線l:f(x,y)=0上,則方程f(x,y)-f(x0,y0)=0表示一條( )
A.過點P且平行于l的直線
B.過點P且垂直于l的直線
C.不過點P但平行于l的直線
D.不過點P但垂直于l的直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:+=1(a>b>0)經(jīng)過點M,其離心率為.
(1)求橢圓C的方程;
(2)設(shè)直線l:y=kx+m(|k|≤)與橢圓C相交于A,B兩點,以線段OA,OB為鄰邊作平行四邊形OAPB,其中頂點P在橢圓C上,O為坐標(biāo)原點.求|OP|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某校舉行2014年元旦匯演,九位評委為某班的節(jié)目打出的分?jǐn)?shù)(百分制)如莖葉統(tǒng)計圖所示,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的中位數(shù)為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com