【題目】如圖,四棱錐M-ABCD中,MB⊥平面ABCD,四邊形ABCD是矩形,AB=MB,E、F分別為MA、MC的中點(diǎn).
(1)求證:平面BEF⊥平面MAD;
(2)若,求三棱錐E-ABF的體積.
【答案】(1)見解析;(2)
【解析】
(1)先證明BE⊥平面MAD,再證平面BEF⊥平面MAD;(2)利用體積變換求三棱錐E-ABF的體積.
(1)因?yàn)镸B⊥平面ABCD,所以MB⊥AD,
又因?yàn)樗倪呅蜛BCD是矩形,所以AD⊥AB,
因?yàn)锳B∩MB=B,所以AD⊥平面MAB,
因?yàn)锽E平面MAB,所以AD⊥BE,
又因?yàn)锳B=MB,E為MA的中點(diǎn),
所以BE⊥MA,因?yàn)镸A∩AD=A,
所以BE⊥平面MAD,
又因?yàn)锽E平面BEF,
所以平面BEF⊥平面MAD.
(2)因?yàn)锳D∥BC,所以BC⊥面MAB,又因?yàn)镕為MC的中點(diǎn),
所以F到面MAB的距離,
又因?yàn)镸B⊥平面ABCD,AB=MB=,E為MA的中點(diǎn),
所以,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面內(nèi)一動(dòng)點(diǎn)()到點(diǎn)的距離與點(diǎn)到軸的距離的差等于1,
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過點(diǎn)的直線與軌跡相交于不同于坐標(biāo)原點(diǎn)的兩點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家統(tǒng)計(jì)局進(jìn)行第四次經(jīng)濟(jì)普查,某調(diào)查機(jī)構(gòu)從15個(gè)發(fā)達(dá)地區(qū),10個(gè)欠發(fā)達(dá)地區(qū),5個(gè)貧困地區(qū)中選取6個(gè)作為國家綜合試點(diǎn)地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).普查過程中首先要進(jìn)行宣傳培訓(xùn),然后確定對象,最后入戶登記,由于種種情況可能會(huì)導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗(yàn),在某普查小區(qū),共有50家企事業(yè)單位,150家個(gè)體經(jīng)營戶,普查情況如下表所示:
普查對象類別 | 順利 | 不順利 | 合計(jì) |
企事業(yè)單位 | 40 | 10 | 50 |
個(gè)體經(jīng)營戶 | 90 | 60 | 150 |
合計(jì) | 130 | 70 | 200 |
(1)寫出選擇6個(gè)國家綜合試點(diǎn)地區(qū)采用的抽樣方法;
(2)根據(jù)列聯(lián)表判斷是否有97.5%的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”,分析造成這個(gè)結(jié)果的原因并給出合理化建議.
附:參考公式: ,其中
參考數(shù)據(jù):
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】梯形中,,矩形所在平面與平面垂直,且,.
(1)求證:平面平面;
(2)若P為線段上一點(diǎn),且異面直線與所成角為45°,求平面與平面所成銳角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xex-alnx(無理數(shù)e=2.718…).
(1)若f(x)在(0,1)單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=-1時(shí),設(shè)g(x)=x(f(x)-xex)-x3+x2-b,若函數(shù)g(x)存在零點(diǎn),求實(shí)數(shù)b的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)站針對“2014年法定節(jié)假日調(diào)休安排”展開的問卷調(diào)查,提出了A、B、C三種放假方案,調(diào)查結(jié)果如下:
支持A方案 | 支持B方案 | 支持C方案 | |
35歲以下 | 200 | 400 | 800 |
35歲以上(含35歲) | 100 | 100 | 400 |
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個(gè)人,已知從“支持A方案”的人中抽取了6人,求n的值;
(2)在“支持B方案”的人中,用分層抽樣的方法抽取5人看作一個(gè)總體,從這5人中任意選取2人,求恰好有1人在35歲以上(含35歲)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)圓錐的體積為,當(dāng)這個(gè)圓錐的側(cè)面積最小時(shí),其母線與底面所成角的正切值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目.若一名學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.
某學(xué)校為了了解高一年級420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有6人 | 6 | 6 | 3 | 1 | 2 | 0 |
選考方案待確定的有8人 | 5 | 4 | 0 | 1 | 2 | 1 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 0 | 0 | 1 | 1 |
(Ⅰ)試估計(jì)該學(xué)校高一年級確定選考生物的學(xué)生有多少人?
(Ⅱ)寫出選考方案確定的男生中選擇“物理、化學(xué)和地理”的人數(shù).(直接寫出結(jié)果)
(Ⅲ)從選考方案確定的男生中任選2名,試求出這2名學(xué)生選考科目完全相同的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com