下列推理是歸納推理的是(  )
A、A,B為定點,動點P滿足|PA|+|PB|=2a>|AB|,則P點的軌跡為橢圓
B、由a1=1,an=3n-1(n≥2),求出S1,S2,S3,猜想出數(shù)列的前n項和Sn的表達(dá)式
C、由圓x2+y2=r2(r>0)的面積S=πr2,猜想出橢圓
x2
a2
+
y2
b2
=1(a>b>0)的面積S=πab
D、利用等差數(shù)列的性質(zhì)推理得到等比數(shù)列的相關(guān)性質(zhì)
考點:歸納推理
專題:推理和證明
分析:根據(jù)歸納推理、類比推理、演繹推理的定義和性質(zhì),對各個選項進(jìn)行判斷,可得答案.
解答: 解:A中的推理,滿足三段論的形式,是一般到特殊的推理,為演繹推理;
B中的推理,是特殊到一般的推理,為歸納推理;
C中的推理,是特殊到特殊的推理,為類比推理;
D中的推理,是特殊到特殊的推理,為類比推理;
故選:B
點評:本題主要考查歸納推理的定義,歸納推理、類比推理、演繹推理的區(qū)別聯(lián)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某人射擊一次,命中7~10環(huán)的概率表:
命中環(huán)數(shù)78910
概率0.320.280.180.12
則射擊一次,命中環(huán)數(shù)不足9環(huán)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
滿足
a
b
=0,|
a
|=|
b
|=1,則|
a
-
b
|=( 。
A、0
B、1
C、2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)是同一函數(shù)的是( 。
①f(x)=
-2x3
和g(x)=x
-2x
           
②f(x)=(
x
2和g(x)=
x2

③f(x)=
x-1
x+1
和g(x)=
x2-1
     
④f(x)=x2-2x-1和g(t)=t2-2t-1.
A、①④B、只有④
C、只有①D、①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,將一個長方體沿相鄰三個面的對角線截出一個棱錐,則棱錐的體積與原長方體的體積之比為( 。
A、1﹕3B、1﹕4
C、1﹕5D、1﹕6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若扇形的面積是1,周長是4,則扇形的圓心角的弧度數(shù)為(  )
A、1B、2C、4D、1或4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x
ex-x
的一段圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一次跳傘訓(xùn)練中,甲,乙兩人各跳一次,記P:“甲降落在指定區(qū)域”;q:“乙降落在指定區(qū)域”.則明天“至少有一人降落在指定區(qū)域”可表示為( 。
A、¬p∨?q
B、p∨¬q
C、¬p∧?q
D、p∨q
E、p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

昌銅高速于2012年10月28日全線通車,它縮短了南昌、奉新、靖安、宜豐和銅鼓之間的時空距離,極大的提高了宜春市公路網(wǎng)的等級結(jié)構(gòu).昌銅高速全長約180km,假設(shè)某汽車從銅鼓進(jìn)入高速公路后,以不低于60km/小時且不高于120km/小時的速度勻速行駛到南昌,已知汽車每小時的運(yùn)輸成本(以元為單位)由固定部分和可變部分組成,固定部分為200元,可變部分與速度的平方成正比,當(dāng)汽車以最快速度行駛時,每小時的運(yùn)輸成本為488元,若使汽車的全程運(yùn)輸成本最低,其速度為( 。﹌m/小時.
A、80B、90
C、100D、110

查看答案和解析>>

同步練習(xí)冊答案