【題目】2019年是新中國成立七十周年,新中國成立以來,我國文化事業(yè)得到了充分發(fā)展,尤其是黨的十八大以來,文化事業(yè)發(fā)展更加迅速,下圖是從2013 年到 2018 年六年間我國公共圖書館業(yè)機構數(shù)(個)與對應年份編號的散點圖(為便于計算,將 2013 年編號為 1,2014 年編號為 2,…,2018年編號為 6,把每年的公共圖書館業(yè)機構個數(shù)作為因變量,把年份編號從 1 到 6 作為自變量進行回歸分析),得到回歸直線,其相關指數(shù),給出下列結論,其中正確的個數(shù)是( )
①公共圖書館業(yè)機構數(shù)與年份的正相關性較強
②公共圖書館業(yè)機構數(shù)平均每年增加13.743個
③可預測 2019 年公共圖書館業(yè)機構數(shù)約為3192個
A.0B.1C.2D.3
科目:高中數(shù)學 來源: 題型:
【題目】某中學對高三年級進行身高統(tǒng)計,測量隨機抽取的20名學生的身高,其頻率分布直方圖如下(單位:cm)
(1)根據(jù)頻率分布直方圖,求出這20名學生身高中位數(shù)的估計值和平均數(shù)的估計值.
(2)在身高為140—160的學生中任選2個,求至少有一人的身高在150—160之間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省即將實行新高考,不再實行文理分科.某校研究數(shù)學成績優(yōu)秀是否對選擇物理有影響,對該校2018級的500名學生進行調在收集到相關數(shù)據(jù)如下:
選物理 | 不選物理 | 總計 | |
數(shù)學成績優(yōu)秀 | |||
數(shù)學成績不優(yōu)秀 | 130 | ||
總計 | 300 | 500 |
(1)根據(jù)以上提供的信息,完成列聯(lián)表,并完善等高條形圖;
(2)能否在犯錯誤的概率不超過0.05的前提下認為數(shù)學成績優(yōu)秀與選物理有關?
附:.
臨界值表:
P() | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 7.879> | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】假設關于某設備的使用年限x(年)和所支出的維修費用y萬元有如下的統(tǒng)計資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點圖并判斷是否線性相關;
(2)如果線性相關,求線性回歸方程;
(3)估計使用年限為10年時,維修費用是多少?
附注:①參考公式:回歸方程中斜率和截距的最小二乘估計分別為;
②參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,.
(1)當時,求函數(shù)的極值;
(2)若在區(qū)間上存在不相等的實數(shù),使得成立,求的取值范圍;
(3)設的圖象為,的圖象為,若直線與分別交于,問是否存在整數(shù),使在處的切線與在處的切線互相平行,若存在,求出的所有值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某網(wǎng)購平臺為了解某市居民在該平臺的消費情況,從該市使用其平臺且每周平均消費額超過100元的人員中隨機抽取了100名,并繪制如圖所示頻率分布直方圖,已知中間三組的人數(shù)可構成等差數(shù)列.
(1)求的值;
(2)分析人員對100名調查對象的性別進行統(tǒng)計發(fā)現(xiàn),消費金額不低于300元的男性有20人,低于300元的男性有25人,根據(jù)統(tǒng)計數(shù)據(jù)完成下列列聯(lián)表,并判斷是否有的把握認為消費金額與性別有關?
(3)分析人員對抽取對象每周的消費金額與年齡進一步分析,發(fā)現(xiàn)他們線性相關,得到回歸方程.已知100名使用者的平均年齡為38歲,試判斷一名年齡為25歲的年輕人每周的平均消費金額為多少.(同一組數(shù)據(jù)用該區(qū)間的中點值代替)
列聯(lián)表
男性 | 女性 | 合計 | |
消費金額 | |||
消費金額 | |||
合計 |
臨界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
,其中
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,下列判斷正確的是( )
A.A1C⊥面AB1D1B.A1C⊥面AB1C1D
C.A1B⊥面AB1D1D.A1B⊥AD1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為的導函數(shù).
(1)求函數(shù)的單調區(qū)間;
(2)若函數(shù)在上存在最大值0,求函數(shù)在[0,+∞)上的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com