【題目】已知函數(shù),.

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)若在區(qū)間上存在不相等的實(shí)數(shù),使得成立,求的取值范圍;

(3)設(shè)的圖象為,的圖象為,若直線分別交于,問是否存在整數(shù),使處的切線與處的切線互相平行,若存在,求出的所有值,若不存在,請(qǐng)說明理由.

【答案】(1)極大值為,無極小值;(2);(3).

【解析】

1)對(duì)函數(shù)進(jìn)行求導(dǎo),并求出方程的根為,判斷為函數(shù)的極大值點(diǎn),再代入求極大值;

2)問題轉(zhuǎn)化成函數(shù)在區(qū)間存在極值點(diǎn);

3)根據(jù)兩條切線互相平行,得到斜率相等,從而構(gòu)造出的方程,再從方程中把分離出來,構(gòu)造關(guān)于的函數(shù),研究函數(shù)的值域,得到的取值范圍后,再根據(jù)為整數(shù),求得的值.

1)當(dāng)時(shí),,

當(dāng)時(shí),得,當(dāng)時(shí),得,

所以單調(diào)遞增,在單調(diào)遞減,

所以,無極小值.

2)令,則

由題意知在區(qū)間存在極值點(diǎn),所以有解,

所以有解,

,則,

當(dāng)時(shí),恒成立,所以單調(diào)遞增,且,

所以.

3,則

,則

設(shè),

在點(diǎn)處的切線的斜率,在點(diǎn)處的切線的斜率

假設(shè)存在兩切線平行,所以,即有解,

所以有解,令,則,,

當(dāng)時(shí),得;當(dāng)時(shí),得,

所以單調(diào)遞增,在單調(diào)遞減,

所以,

所以恒成立,所以單調(diào)遞減,

所以,則,又為整數(shù),

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)等比數(shù)列是單調(diào)遞增數(shù)列,且的等差中項(xiàng)為,的等比中項(xiàng)為16,.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)令,,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中a為常數(shù).

當(dāng)時(shí),設(shè)函數(shù),判斷函數(shù)上是增函數(shù)還是減函數(shù),并說明理由;

設(shè)函數(shù),若函數(shù)有且僅有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時(shí),求函數(shù)的極值;

(2)是否存在實(shí)數(shù),使得當(dāng)時(shí),函數(shù)的最大值為?若存在,取實(shí)數(shù)的取值范圍,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)寫出直線的普通方程及曲線的直角坐標(biāo)方程;

(2)已知點(diǎn),點(diǎn),直線過點(diǎn)且曲線相交于,兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年是新中國成立七十周年,新中國成立以來,我國文化事業(yè)得到了充分發(fā)展,尤其是黨的十八大以來,文化事業(yè)發(fā)展更加迅速,下圖是從2013 年到 2018 年六年間我國公共圖書館業(yè)機(jī)構(gòu)數(shù)(個(gè))與對(duì)應(yīng)年份編號(hào)的散點(diǎn)圖(為便于計(jì)算,將 2013 年編號(hào)為 1,2014 年編號(hào)為 2,…,2018年編號(hào)為 6,把每年的公共圖書館業(yè)機(jī)構(gòu)個(gè)數(shù)作為因變量,把年份編號(hào)從 1 到 6 作為自變量進(jìn)行回歸分析),得到回歸直線,其相關(guān)指數(shù),給出下列結(jié)論,其中正確的個(gè)數(shù)是( )

①公共圖書館業(yè)機(jī)構(gòu)數(shù)與年份的正相關(guān)性較強(qiáng)

②公共圖書館業(yè)機(jī)構(gòu)數(shù)平均每年增加13.743個(gè)

③可預(yù)測(cè) 2019 年公共圖書館業(yè)機(jī)構(gòu)數(shù)約為3192個(gè)

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)動(dòng)圓P(圓心為P)經(jīng)過定點(diǎn)(0,2),被x軸截得的弦長(zhǎng)為4,P的軌跡為曲線C

(1) 求C的方程

(2) 設(shè)不經(jīng)過坐標(biāo)原點(diǎn)O的直線lC交于A、B兩點(diǎn),O在以線段AB為直徑的圓上,求證:直線l經(jīng)過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖的空間幾何體中,四邊形為邊長(zhǎng)為2的正方形,平面,,,且,.

1)求證:平面平面

2)求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠C=,AC=BC,M、N分別是BC、AB的中點(diǎn),將BMN沿直線MN折起,使二面角B′﹣MN﹣B的大小為,則B'N與平面ABC所成角的正切值是(  。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案