【題目】已知函數(shù)f(x)=ex﹣1﹣ ,a∈R.
(1)若函數(shù)g(x)=(x﹣1)f(x)在(0,1)上有且只有一個極值點,求a的范圍;
(2)當a≤﹣1時,證明:f(x)lnx>0對于任意x∈(0,1)∪(1,+∞)成立.
【答案】
(1)解:g(x)=(x﹣1)f(x)=(x﹣1)(ex﹣1)﹣ax,x∈(0,1),
g′(x)=xex﹣a﹣1,
由函數(shù)g(x)在(0,1)上有且只有一個極值點,等價于g′(x)=xex﹣a﹣1在(0,1)上有且僅有一個變號零點,
令H(x)=xex﹣a﹣1,x∈[0,1],
H′(x)=ex(x+1),由x∈[0,1],H′(x)>0,
H(x)在[0,1]單調遞增,
∴H(0)=﹣a﹣1<0,H(1)=e﹣a﹣1>0,
解得:﹣1<a<e﹣1,
∴當﹣1<a<e﹣1時,函數(shù)g(x)在(0,1)上有且只有一個極值點
(2)證明:f(x)lnx=(ex﹣1﹣ )lnx,只需證: lnx[(x﹣1)(ex﹣1)﹣ax]≥0 在 (0,1)∪(1,+∞) 上恒成立,
由x∈(0,1)∪(1,+∞) 時, lnx>0恒成立,
∴只需證:(x﹣1)(ex﹣1)﹣ax≥0 在(0,+∞)恒成立,
設g(x)=(x﹣1)(ex﹣1)﹣ax,x∈[0,+∞),
由g(0)=0 恒成立,
∴只需證:g(x)≥0 在[0,+∞),恒成立 g′(x)=xex﹣1﹣a,
g″(x)=(x+1)ex>0恒成立,
∴g′(x)單調遞增,g′(x)≥g′(0)=﹣1﹣a≥0,
∴g(x)單調遞增,g(x)≥g(0)=0,
∴g(x)≥0 在[0,+∞)恒成立,
∴f(x)lnx>0對于任意x∈(0,1)∪(1,+∞)成立
【解析】(1)由題意可知:由函數(shù)g(x)在(0,1)上有且只有一個極值點,等價于g′(x)=xex﹣a﹣1在(0,1)上有且僅有一個變號零點,構造輔助函數(shù),根據(jù)函數(shù)的單調性,即可求得a的范圍;(2)由題意,利用分析法,由結論可得 (x﹣1)(ex﹣1)﹣ax≥0 在(0,+∞)恒成立,設g(x)=(x﹣1)(ex﹣1)﹣ax,x∈[0,+∞),利用導數(shù)研究函數(shù)g(x)單調性,則結論易得.
【考點精析】掌握函數(shù)的極值與導數(shù)和函數(shù)的最大(小)值與導數(shù)是解答本題的根本,需要知道求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側面BB1C1C為菱形,AB⊥B1C.
(Ⅰ)證明:AC=AB1;
(Ⅱ)若AC⊥AB1 , ∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為 .
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)求直線l被曲線C截得的弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱柱中,平面,,, ,, 為的中點.
(Ⅰ)求CE與DB所成角的余弦值;
(Ⅱ)設點在線段上,且直線與平面所成角的正弦值為,求線段的長度
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(sinx,﹣1), =(cosx, ),函數(shù)f(x)=( + ) .
(1)求函數(shù)f(x)的單調遞增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移 個單位得到函數(shù)g(x)的圖象,在△ABC中,角A,B,C所對邊分別a,b,c,若a=3,g( )= ,sinB=cosA,求b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x其中x∈(0,1),以A,B為焦點且過點D的雙曲線的離心率為e1 , 以C,D為焦點且過點A的橢圓的離心率為e2 , 若對任意x∈(0,1)不等式t<e1+e2恒成立,則t的最大值為( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省高考改革新方案,不分文理科,高考成績實行“3+3”的構成模式,第一個“3”是語文、數(shù)學、外語,每門滿分150分,第二個“3”由考生在思想政治、歷史、地理、物理、化學、生物6個科目中自主選擇其中3個科目參加等級性考試,每門滿分100分,高考錄取成績卷面總分滿分750分.為了調查學生對物理、化學、生物的選考情況,將“某市某一屆學生在物理、化學、生物三個科目中至少選考一科的學生”記作學生群體S,從學生群體S中隨機抽取了50名學生進行調查,他們選考物理,化學,生物的科目數(shù)及人數(shù)統(tǒng)計如表:
選考物理、化學、生物的科目數(shù) | 1 | 2 | 3 |
人數(shù) | 5 | 25 | 20 |
(I)從所調查的50名學生中任選2名,求他們選考物理、化學、生物科目數(shù)量不相等的概率;
(II)從所調查的50名學生中任選2名,記X表示這2名學生選考物理、化學、生物的科目數(shù)量之差的絕對值,求隨機變量X的分布列和數(shù)學期望;
(III)將頻率視為概率,現(xiàn)從學生群體S中隨機抽取4名學生,記其中恰好選考物理、化學、生物中的兩科目的學生數(shù)記作Y,求事件“y≥2”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ln(x+1)+ .
(I)討論函數(shù)f(x)在(0,+∞)上的單調性;
(II)設函數(shù)f(x)存在兩個極值點,并記作x1 , x2 , 若f(x1)+f(x2)>4,求正數(shù)a的取值范圍;
(III)求證:當a=1時,f(x)> (其中e為自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某保險的基本保費為a(單位:元),繼續(xù)購買該保險的投保人成為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關聯(lián)如下:
上年度出險次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
設該險種一續(xù)保人一年內出險次數(shù)與相應概率如下:
一年內出險次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
(Ⅰ)求一續(xù)保人本年度的保費高于基本保費的概率;
(Ⅱ)若一續(xù)保人本年度的保費高于基本保費,求其保費比基本保費高出60%的概率;
(Ⅲ)求續(xù)保人本年度的平均保費與基本保費的比值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com