【題目】在等腰梯形ABCD中,AB∥CD,且|AB|=2,|AD|=1,|CD|=2x其中x∈(0,1),以A,B為焦點且過點D的雙曲線的離心率為e1 , 以C,D為焦點且過點A的橢圓的離心率為e2 , 若對任意x∈(0,1)不等式t<e1+e2恒成立,則t的最大值為(
A.
B.
C.2
D.

【答案】B
【解析】解:在等腰梯形ABCD中,BD2=AD2+AB2﹣2ADABcos∠DAB

=1+4﹣2×1×2×(1﹣x)=1+4x,

由雙曲線的定義可得a1= ,c1=1,e1= ,

由橢圓的定義可得a2= ,c2=x,e2= ,

則e1+e2= + = +

令t= ∈(0, ﹣1),

則e1+e2= (t+ )在(0, ﹣1)上單調(diào)遞減,

所以e1+e2 ×( ﹣1+ )= ,

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確命題的個數(shù)是( ) ①對于命題p:x∈R,使得x2+x+1<0,則¬p:x∈R,均有x2+x+1>0;
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
③回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則回歸直線方程為 =1.23x+0.08;
④m=3是直線(m+3)x+my﹣2=0與直線mx﹣6y+5=0互相垂直的充要條件.
A.1
B.3
C.2
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點,且離心率

(1)求橢圓的標準方程

(2)是否存在過點的直線交橢圓與不同的兩點,且滿足 (其中為坐標原點)。若存在,求出直線的方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:x+2y﹣4=0與坐標軸交于A、B兩點,O為坐標原點,則經(jīng)過O、A、B三點的圓的標準方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣1﹣ ,a∈R.
(1)若函數(shù)g(x)=(x﹣1)f(x)在(0,1)上有且只有一個極值點,求a的范圍;
(2)當(dāng)a≤﹣1時,證明:f(x)lnx>0對于任意x∈(0,1)∪(1,+∞)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCDA1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F,且EF,則下列結(jié)論中正確的序號是_____

①AC⊥BE ②EF∥平面ABCD ③△AEF的面積與△BEF的面積相等.④三棱錐A﹣BEF的體積為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線C:y2=4x的焦點為F,準線為l,P為拋物線C上一點,且P在第一象限,PM⊥l于點M,線段MF與拋物線C交于點N,若PF的斜率為 ,則 =(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)對定義域內(nèi)的任意x1 , x2 , 當(dāng)f(x1)=f(x2)時,總有x1=x2 , 則稱函數(shù)f(x)為單純函數(shù),例如函數(shù)f(x)=x是單純函數(shù),但函數(shù)f(x)=x2不是單純函數(shù).若函數(shù) 為單純函數(shù),則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)= +ln( +x)+ cos xdx在區(qū)間[﹣k,k](k>0)上的值域為[m,n],則m+n的值是( )
A.0
B.2
C.4
D.6

查看答案和解析>>

同步練習(xí)冊答案