【題目】如圖,在市中心有一矩形空地.市政府欲將它改造成綠化景觀帶,具體方案如下:在邊上分別取點M,N,在三角形內建造假山,在以為直徑的半圓內建造噴泉,其余區(qū)域栽種各種觀賞類植物.
(1)若假山區(qū)域面積為,求噴泉區(qū)域面積的最小值;
(2)若,求假山區(qū)域面積的最大值.
【答案】(1);(2).
【解析】
(1)設,半圓的直徑,根據(jù)假山區(qū)域面積為,找到與的關系,再表示出噴泉區(qū)域面積,求最值,注意驗證半圓是否在矩形空地內,即驗證是否能取到最小值;
(2)由(1)根據(jù)以為直徑的半圓區(qū)域在矩形廣場內,求得的范圍,再將假山區(qū)域面積用表示出來,再求最值.
解:(1)設,半圓的直徑,半圓的圓心為O.
在直角三角形中,,所以.
因為假山區(qū)域面積為,
所以
所以,所以噴泉區(qū)域面積,
當且僅當,即時取等號.此時.
因為點O到的距離,點O到的距離,
所以,即,
,即.
所以以為直徑的半圓區(qū)域一定在矩形廣場內.
所以當時,取得最小值.
噴泉區(qū)域面積的最小值為.
(2)由(1)知,若,則.
所以點O到的距離,
點O到的距離,
因為以為直徑的半圓區(qū)域在矩形廣場內,
所以即所以.
又因為,所以.
所以假山區(qū)域面積,
因為,所以,
所以當時,假山區(qū)域面積的最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在等腰梯形中,,,,為的中點.現(xiàn)分別沿,將和折起,點折至點,點折至點,使得平面平面,平面平面,連接,如圖2.
(Ⅰ)若、分別為、的中點,求證:平面平面;
(Ⅱ)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,圓.
(1)若拋物線的焦點在圓上,且為 和圓 的一個交點,求;
(2)若直線與拋物線和圓分別相切于點,求的最小值及相應的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(是自然對數(shù)的底數(shù)).證明:
(1)存在唯一的極值點;
(2)有且僅有兩個實根,且兩個實根互為相反數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設 (,).
(1)若展開式中第5項與第7項的系數(shù)之比為3∶8,求k的值;
(2)設(),且各項系數(shù),,,…,互不相同.現(xiàn)把這個不同系數(shù)隨機排成一個三角形數(shù)陣:第1列1個數(shù),第2列2個數(shù),…,第n列n個數(shù).設是第i列中的最小數(shù),其中,且i,.記的概率為.求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程:在平面直角坐標系中,曲線:(為參數(shù)),在以平面直角坐標系的原點為極點、軸的正半軸為極軸,且與平面直角坐標系取相同單位長度的極坐標系中,曲線:.
(1)求曲線的普通方程以及曲線的平面直角坐標方程;
(2)若曲線上恰好存在三個不同的點到曲線的距離相等,求這三個點的極坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用一個平行于底面的截面去截一個正棱錐,截面和底面間的幾何體叫正棱臺.如圖,在四棱臺中,,分別為的中點.
(Ⅰ)求證:平面;
(Ⅱ)若側棱所在直線與上下底面中心的連線所成的角為,求直線與平面所成的角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com