【題目】已知函數(shù).
(1)若,且函數(shù)在其定義域內(nèi)為增函數(shù),求實數(shù)的取值范圍;
(2)設函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.
【答案】(1)(2)
【解析】
(1)=,求其導函數(shù),利用F(x)在定義域(0,+∞)內(nèi)為增函數(shù),得≥0在(0,+∞)上恒成立,得,設,利用導數(shù)求最大值可得正實數(shù)p的取值范圍;
(2)設函數(shù)=f(x)﹣g(x)=px﹣,x∈[1,e],轉(zhuǎn)化為 在[1,e]上至少存在一點x0,使得求函數(shù)的導函數(shù),然后對p分類求 的最大值即可.
(1),.
由定義域內(nèi)為增函數(shù),所以在上恒成立,
所以即,對任意恒成立,
設,=0的根為x=1
得在上單調(diào)遞增,在上單調(diào)遞減,
則,所以,即.
(2)設函數(shù),,
因為在上至少存在一點,使得成立,則
,
①當時,,則在上單調(diào)遞增,,舍;
②當時,,
∵,∴,,,則,舍;
③當時,,
則在上單調(diào)遞增,,得,
綜上,.
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預測該地區(qū)2015年農(nóng)村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosA﹣asinB=0.
(1)求A;
(2)已知a=2,B=,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某校組織的高二女子排球比賽中,有、兩個球隊進入決賽,決賽采用7局4勝制.假設、兩隊在每場比賽中獲勝的概率都是.并記需要比賽的場數(shù)為.
(Ⅰ)求大于4的概率;
(Ⅱ)求的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的短軸長為,離心率為,過右焦點的直線與橢圓交于不同兩點,.線段的垂直平分線交軸于點.
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下四個關(guān)于圓錐曲線的命題:
①設A,B是兩個定點,為非零常數(shù),若,則P的軌跡是雙曲線;
②過定圓C上一定點A作圓的弦AB,O為原點,若向量.則動點P的軌跡是橢圓;
③方程的兩根可以分別作為橢圓和雙曲線的離心率;
④雙曲線與橢圓有相同的焦點.
其中正確命題的序號為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列三種說法:
①命題p:x0∈R,tan x0=1,命題q:x∈R,x2-x+1>0,則命題“p∧()”是假命題.
②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是=-3.
③命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”.
其中所有正確說法的序號為________________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】港珠澳大橋是中國建設史上里程最長,投資最多,難度最大的跨海橋梁項目,大橋建設需要許多橋梁構(gòu)件。從某企業(yè)生產(chǎn)的橋梁構(gòu)件中抽取件,測量這些橋梁構(gòu)件的質(zhì)量指標值,由測量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標值落在區(qū)間,,內(nèi)的頻率之比為.
(1)求這些橋梁構(gòu)件質(zhì)量指標值落在區(qū)間內(nèi)的頻率;
(2)用分層抽樣的方法在區(qū)間內(nèi)抽取一個容量為的樣本,將該樣本看成一個總體,從中任意抽取件橋梁構(gòu)件,求這件橋梁構(gòu)件都在區(qū)間內(nèi)的概率
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:,為坐標原點,為橢圓的左焦點,離心率為,直線與橢圓相交于,兩點.
(1)求橢圓的方程;
(2)若是弦的中點,是橢圓上一點,求的面積最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com