【題目】已知點(diǎn)A(-2,0),B(2,0),過點(diǎn)A作直線l與以AB為焦點(diǎn)的橢圓交于M,N兩點(diǎn),線段MN的中點(diǎn)到y軸的距離為,且直線l與圓x2y2=1相切,則該橢圓的標(biāo)準(zhǔn)方程是________,過A點(diǎn)的橢圓的最短弦長為________.

【答案】

【解析】

根據(jù)題意,知直線l的斜率存在,設(shè)直線l的方程為yk(x+2),①

由題意設(shè)橢圓方程為=1(a2>4),②

由直線l與圓x2y2=1相切,得=1,解得k2.將①代入②,得(a2-3)x2a2xa4+4a2=0,設(shè)點(diǎn)M的坐標(biāo)為(x1,y1),點(diǎn)N的坐標(biāo)為(x2,y2),由根與系數(shù)的關(guān)系,得x1x2=-,又線段MN的中點(diǎn)到y軸的距離為,所以|x1x2|=,即-=-,解得a2=8.所以該橢圓的標(biāo)準(zhǔn)方程為.過A點(diǎn)的橢圓最短弦垂直于x軸,其長為2.故填,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個(gè)定點(diǎn),動點(diǎn)滿足.設(shè)動點(diǎn)的軌跡為曲線,直線.

(1)求曲線的軌跡方程;

(2)若與曲線交于不同的兩點(diǎn),且為坐標(biāo)原點(diǎn)),求直線的斜率;

(3)若, 是直線上的動點(diǎn),過作曲線的兩條切線,切點(diǎn)為,探究:直線是否過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【題目】已知拋物線C:y2=2x,過點(diǎn)(2,0)的直線l交C于A,B兩點(diǎn),圓M是以線段AB為直徑的圓.

(1)證明:坐標(biāo)原點(diǎn)O在圓M上;

(2)設(shè)圓M過點(diǎn)P(4,-2),求直線l與圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),下列結(jié)論不正確的是( )

A. 此函數(shù)為偶函數(shù)B. 此函數(shù)是周期函數(shù)

C. 此函數(shù)既有最大值也有最小值D. 方程的解為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“黃梅時(shí)節(jié)家家雨”“梅雨如煙暝村樹”“梅雨暫收斜照明”……江南梅雨的點(diǎn)點(diǎn)滴滴都流潤著濃烈的詩情.每年六、七月份,我國長江中下游地區(qū)進(jìn)入持續(xù)25天左右的梅雨季節(jié),如圖是江南鎮(zhèn)2009~2018年梅雨季節(jié)的降雨量(單位:)的頻率分布直方圖,試用樣本頻率估計(jì)總體概率,解答下列問題:

“梅實(shí)初黃暮雨深”.請用樣本平均數(shù)估計(jì)鎮(zhèn)明年梅雨季節(jié)的降雨量;

“江南梅雨無限愁”.鎮(zhèn)的楊梅種植戶老李也在犯愁,他過去種植的甲品種楊梅,他過去種植的甲品種楊梅,畝產(chǎn)量受降雨量的影響較大(把握超過八成).而乙品種楊梅2009~2018年的畝產(chǎn)量(/畝)與降雨量的發(fā)生頻數(shù)(年)如列聯(lián)表所示(部分?jǐn)?shù)據(jù)缺失).請你幫助老李排解憂愁,他來年應(yīng)該種植哪個(gè)品種的楊梅受降雨量影響更?

(完善列聯(lián)表,并說明理由).

畝產(chǎn)量\降雨量

合計(jì)

<600

2

1

合計(jì)

10

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.703

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),設(shè)函數(shù)的所有零點(diǎn)構(gòu)成集合,函數(shù)的所有零點(diǎn)構(gòu)成集合

1)試求集合、;

2)令,求函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:,使等式成立是真命題.

1求實(shí)數(shù)的取值集合

2設(shè)不等式的解集為,若的必要不充分條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求滿足方程的值;

2)若函數(shù)是定義在R上的奇函數(shù).

①若存在,使得不等式成立,求實(shí)數(shù)的取值范圍;

②已知函數(shù)滿足,若對任意,不等式恒成立,求實(shí)數(shù)的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】基于移動互聯(lián)技術(shù)的共享單車被稱為“新四大發(fā)明”之一,短時(shí)間內(nèi)就風(fēng)靡全國,帶給人們新的出行體驗(yàn).某共享單車運(yùn)營公司的市場研究人員為了解公司的經(jīng)營狀況,對該公司最近六個(gè)月內(nèi)的市場占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如下表:

月份

2017.8

2017.9

2017.10

2017.11

2017.12

2018.1

月份代碼x

1

2

3

4

5

6

市 場占有率y(%)

11

13

16

15

20

21

(1)請?jiān)诮o出的坐標(biāo)紙中作出散點(diǎn)圖;

(2)求y關(guān)于x的線性回歸方程,并預(yù)測該公司20182月份的市場占有率;

參考公式:回歸直線方程為 其中:,

查看答案和解析>>

同步練習(xí)冊答案