精英家教網 > 高中數學 > 題目詳情
已知數列{an}(n為正整數)是首項是a1,公比為q的等比數列.
(1)求和:a1C20-a2C21+a3C22,a1C30-a2C31+a3C32-a4C33;
(2)由(1)的結果歸納概括出關于正整數n的一個結論,并加以證明.
(3)設q≠1,Sn是等比數列{an}的前n項和,求:S1Cn0-S2Cn1+S3Cn2-S4Cn3+…+(-1)nSn+1Cnn
分析:(1)利用組合數公式和等比數列的通項公式進行化簡,再利用平方差和立方差公式合并.
(2)利用歸納推理和(1)的結果進行推理出結論,利用二項式定理從左邊到右邊證明.
(3)由題意知數列{an}是等比數列,而且q≠1,求出sn代入所給的式子,進行整理和分組,再利用二項式定理求解.
解答:解:(1)a1C20-a2C21+a3C22=a1-2a1q+a1q2
=a1(1-q)2
a1C30-a2C31+a3C32-a4C33
=a1(1-q)2a1C30-a2C31+a3C32-a4C33
=a1-3a1q+3a1q2-a1q3
=a1(1-q)3;
(2)歸納概括的結論為:若數列{an}是首項為a1,公比為q的等比數列,
則a1Cn0-a2Cn1+a3Cn2-a4Cn3+…+(-1)nan+1Cnn=a1(1-q)n,n為正整數
證明:a1Cn0-a2Cn1+a3Cn2-a4Cn3+…+(-1)nan+1Cnn
=a1Cn0-a1qCn1+a1q2Cn2-a1q3Cn3+…+(-1)na1qnCnn
=a1[Cn0-qCn1+q2Cn2-q3Cn3+…+(-1)nqnCnn]
=a1(1-q)n;
∴左邊=右邊,該結論成立.
(3)∵數列{an}(n為正整數)是首項是a1,公比為q的等比數列,而且q≠1.
Sn=
a1-a1qn
1-q
=
a1(1-qn)
1-q

∴S1Cn0-S2Cn1+S3Cn2-S4Cn3+…+(-1)nSn+1Cnn
=
a1
1-q
[(1-q)cn0-(1-q2)cn1+(1-q3)cn2-(1-q4)cn3+…+(-1)n(1-qn+1)cnn]
=
a1
1-q
[
C
0
n
-
C
1
n
+
C
2
n
-
C
3
n
+…+(-1)n
C
n
n
]-
a1q
1-q
[
C
0
n
-q
C
1
n
+q2
C
2
n
-q3
C
3
n
+…+(-1)nqn
C
n
n
]

=
a1q
q-1
(1-q)n
點評:本題為等比數列和二項式定理的綜合應用,還用到組合數公式,計算量大;在化簡式子時根據特點進行分組求解,利用二項式定理進行化簡.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

11、已知數列{an}(n≥1)滿足an+2=an+1-an,且a2=1.若數列的前2011項之和為2012,則前2012項的和等于(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

17、已知數列{an}前n項和為Sn且2an-Sn=2(n∈N*).
(Ⅰ)求{an}的通項公式;
(Ⅱ)若數列{bn}滿足b1=1,且bn+1=bn+an(n≥1),求{bn}通項公式及前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}(n∈N+)中,a1=1,an+1=
an
2an+1
,則an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}前n項和Sn=n2+2n,設bn=
1anan+1

(1)試求an;
(2)求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•嘉定區(qū)一模)定義x1,x2,…,xn的“倒平均數”為
n
x1+x2+…+xn
(n∈N*).已知數列{an}前n項的“倒平均數”為
1
2n+ 4
,記cn=
an
n+1
(n∈N*).
(1)比較cn與cn+1的大;
(2)設函數f(x)=-x2+4x,對(1)中的數列{cn},是否存在實數λ,使得當x≤λ時,f(x)≤cn對任意n∈N*恒成立?若存在,求出最大的實數λ;若不存在,說明理由.
(3)設數列{bn}滿足b1=1,b2=b(b∈R且b≠0),bn=|bn-1-bn-2|(n∈N*且n≥3),且{bn}是周期為3的周期數列,設Tn為{bn}前n項的“倒平均數”,求
lim
n→∞
Tn

查看答案和解析>>

同步練習冊答案