【題目】有5個匣子,每個匣子有一把鑰匙,并且鑰匙不能通用.如果隨意在每一個匣內(nèi)放入一把鑰匙,然后把匣子全都鎖上.現(xiàn)在允許砸開一個匣子,使得能相繼用鑰匙打開其余4個匣子,那么鑰匙的放法有______種.
【答案】
【解析】
首先,在砸開的匣子中必放有另一個匣子的鑰匙,在匣子中又放有匣子的鑰匙,在匣子中放有匣子的鑰匙,在匣子中放有匣子的鑰匙,在匣子中放有被砸開的匣子的鑰匙.記這個砸開的匣子為.這就相當(dāng)于1,2,3,4,5形成一個環(huán)狀排列.
反過來,對由1,2,3,4,5排成的每一種環(huán)狀排列,也就可以對應(yīng)成一種相繼打開各個匣子的一種放鑰匙的方法.先讓5個匣子沿著圓環(huán)對號入座,再在每個匣子中放入其下方的匣子的鑰匙(如圖),這就得到一種相繼打開各個匣子的放鑰匙的方法.所以,可使所有匣子相繼打開的放鑰匙的方法數(shù)恰與1,2,3,4,5的環(huán)狀排列數(shù)相等.
由于每個環(huán)狀排列(如圖)可以剪開拉直為5個排列:,,,,;,,,,;,,,,;,,,,;,,,,.
反之,5個這樣的排列對應(yīng)著一個環(huán)狀排列,因而5個元素的環(huán)狀排列數(shù)為(種).
一般地,個元素的環(huán)狀排列數(shù)為種.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的不等式,其中;
(1)試求不等式的解集;
(2)對于不等式的解集,記(其中為整數(shù)集),若集合為有限集,求實(shí)數(shù)的取值范圍,使得集合中元素個數(shù)最少,并用列舉法表示集合;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加某次知識競賽的同學(xué)中,選取60名同學(xué)將其成績(百分制,均為整數(shù))分成, , , , , 六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題:
(1)求分?jǐn)?shù)內(nèi)的頻率,并補(bǔ)全這個頻率分布直方圖;
(2)從頻率分布直方圖中,估計本次考試成績的中位數(shù);
(3)若從第1組和第6組兩組學(xué)生中,隨機(jī)抽取2人,求所抽取2人成績之差的絕對值大于10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,左頂點(diǎn)到直線的距離,為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于兩點(diǎn),若以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),證明:到直線的距離為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(不等式選講)
已知函數(shù).
(1)若,解不等式;
(2)若不等式在R上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓()的上頂點(diǎn)為,圓經(jīng)過點(diǎn).
(1)求橢圓的方程;
(2)過點(diǎn)作直線交橢圓于,兩點(diǎn),過點(diǎn)作直線的垂線交圓于另一點(diǎn).若△PQN的面積為3,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),記在點(diǎn)處的切線為.
(1)當(dāng)時,求證:函數(shù)的圖像(除切點(diǎn)外)均為切線的下方;
(2)當(dāng)時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在盒子里有大小相同,僅顏色不同的乒乓球共10個,其中紅球5個,白球3個,藍(lán)球2個.現(xiàn)從中任取出一球確定顏色后放回盒子里,再取下一個球.重復(fù)以上操作,最多取3次,過程中如果取出藍(lán)色球則不再取球.
(1)求整個過程中恰好取到2個白球的概率;
(2)求取球次數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com