已知=
a
(1,2),
b
=(0,1),
c
=(-2,k),若(
a
+2
b
)⊥
c
,則k=( 。
A、-
1
2
B、-2
C、2
D、
1
2
考點:數(shù)量積判斷兩個平面向量的垂直關系
專題:平面向量及應用
分析:利用向量垂直與數(shù)量積的關系即可得出.
解答: 解:
a
+2
b
=(1,2)+2(0,1)=(1,4),
∵(
a
+2
b
)⊥
c

∴-2+4k=0,
解得k=
1
2

故選:D.
點評:本題考查了向量垂直與數(shù)量積的關系,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,若a2+a4+a6=12,則S7的值是( 。
A、28B、24C、21D、7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)y=
1+2x+a•4x
,若函數(shù)在(-∞,1]上有意義,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=
x2(x≥0)
-x(x<0)
,則f(f(-2))=( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
log2x,x>0
3x,
 x≤0
,則f[f(
1
4
)]
的值為( 。
A、
1
9
B、
1
3
C、-2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD是矩形,BC⊥平面ABEF,四邊形ABEF是梯形,∠EFA=∠FAB=90°,EF=FA=AD=1,AB=2,點M是DF的中點.
(Ⅰ)求證:BF∥平面AMC,
(Ⅱ)求二面角B-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,底面是正方形的四棱錐P-ABCD,平面PCD⊥平面ABCD,PC=PD=CD=2.
(Ⅰ)求證:PD⊥BC;
(Ⅱ)求直線PA與平面ABCD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x-1
x+1
,x∈[0,+∞)的值域為( 。
A、[-1,1)
B、(-1,1]
C、[-1,+∞)
D、[0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,四棱錐P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,E為PC的中點,證明:EB∥平面PAD.

查看答案和解析>>

同步練習冊答案