(本小題滿分12分)設遞增等比數(shù)列{}的前n項和為,且=3,=13,數(shù)列{}滿足,點P(,)在直線x-y+2=0上,n∈N﹡.
(Ⅰ)求數(shù)列{},{}的通項公式;
(Ⅱ)設,數(shù)列{}的前n項和,若>2a-1恒成立(n∈N﹡),求實數(shù)a的取值范圍.

(1),(2)

解析試題分析:解:(Ⅰ)由可得
因為數(shù)列為遞增等比數(shù)列,所以,.
是首項為,公比為的等比數(shù)列. 所以.     3分
由點在直線上,所以.
則數(shù)列是首項為1,公差為2的等差數(shù)列.則.     5分
(Ⅱ)因為,所以.
,     7分
兩式相減得:
     8分
所以.        9分

. 若恒成立,則,.     12分
考點:數(shù)列的通項公式和求和
點評:該試題是常規(guī)試題,也是高考中的重點知識,需要熟練的掌握,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an},其前n項和為Sn
(1)若對任意的n∈N,a2n﹣1,a2n+1,a2n組成公差為4的等差數(shù)列,且,求n的值;
(2)若數(shù)列{}是公比為q(q≠﹣1)的等比數(shù)列,a為常數(shù),求證:數(shù)列{an}為等比數(shù)列的充要條件為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知在等比數(shù)列中,,且的等差中項.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,求的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{}是等差數(shù)列,且滿足:a1+a2+a3=6,a5=5;
數(shù)列{}滿足:(n≥2,n∈N﹡),b1=1.
(Ⅰ)求
(Ⅱ)記數(shù)列(n∈N﹡),若{}的前n項和為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是公差不為零的等差數(shù)列, 成等比數(shù)列.
求數(shù)列的通項;       求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分18分,第1小題4分,第2小題6分,第3小題8分)
已知數(shù)列{an}滿足,(其中λ≠0且λ≠–1,n∈N*),為數(shù)列{an}的前項和.
(1) 若,求的值;
(2) 求數(shù)列{an}的通項公式
(3) 當時,數(shù)列{an}中是否存在三項構成等差數(shù)列,若存在,請求出此三項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題10分) 等比數(shù)列{}的前n 項和為,已知,,成等差數(shù)列
(1)求{}的公比q;
(2)求=3,求;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分16分)
已知數(shù)列滿足
(1)求證:數(shù)列為等比數(shù)列  (2)求數(shù)列的通項公式
(3)試問:數(shù)列中是否存在不同的三項恰好成等差數(shù)列?若存在,求出這三項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

等比數(shù)列的前項和為4,前項和為12,則它的前項和是

A.28 B.48 C.36 D.52 

查看答案和解析>>

同步練習冊答案