C
 
5
7
=
 
考點(diǎn):組合及組合數(shù)公式
專題:排列組合
分析:由組合數(shù)的性質(zhì)和計(jì)算公式可得
C
5
7
=
C
2
7
=
7×6
2×1
,計(jì)算可得.
解答: 解:
C
5
7
=
C
2
7
=
7×6
2×1
=21
故答案為:21
點(diǎn)評(píng):本題考查組合數(shù)的計(jì)算,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩選手比賽,假設(shè)每局比賽甲勝的概率是
2
3
,乙勝的概率是
1
3
,不會(huì)出現(xiàn)平局.
(1)如果兩人賽3局,求甲恰好勝2局的概率和乙至少勝1局的概率;
(2)如果采用五局三勝制(若甲、乙任何一方先勝3局,則比賽結(jié)束,結(jié)果為先勝3局者獲勝),求甲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩直線l1:ax-2y+1=0和l2:x+by-1=0,求滿足下列條件的a,b的值.
(1)l1⊥l2,且直線l1過點(diǎn)(-3,-1);
(2)l1∥l2,且坐標(biāo)原點(diǎn)到這兩條直線的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)袋中有20個(gè)大小相同的小球,其中記上0號(hào)的有10個(gè),記上n號(hào)的有n個(gè)(n=1,2,3,4).現(xiàn)從袋中任取一球,用ξ表示所取球的標(biāo)號(hào).
(1)求ξ的分布列的數(shù)學(xué)期望和方差;
(2)若η=aξ+b,E(η)=2,D(η)=44,試求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x,點(diǎn)A為其上一動(dòng)點(diǎn),P為OA的中點(diǎn)(O為坐標(biāo)原點(diǎn)),且點(diǎn)P恒在拋物線C上,
(1)求曲線C的方程;
(2)若M點(diǎn)為曲線C上一點(diǎn),其縱坐標(biāo)為2,動(dòng)直線L交曲線C與T、R兩點(diǎn):
    ①證明:當(dāng)動(dòng)直線L恒過定點(diǎn)N(4,-2)時(shí),∠TMR為定值;
    ②幾何畫板演示可知,當(dāng)∠TMR等于①中的那個(gè)定值時(shí),動(dòng)直線L必經(jīng)過某個(gè)定點(diǎn),請(qǐng)指出這個(gè)定點(diǎn)的坐標(biāo).(只需寫出結(jié)果,不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到贏利的過程.若該公司年初以來累積利潤s(萬元)與銷售時(shí)間t(月)之間的關(guān)系(即前t個(gè)月的利潤總和與t之間的關(guān)系)式為s=
1
2
t2-2t,若累積利潤s超過30萬元,則銷售時(shí)間t(月)的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線(2m-1)x+5my-1=0和3mx-y-2=0分別過定點(diǎn)A、B,則|AB|等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知非零向量
a
,
b
,若
a
b
=0,則
|
a
-2
b
|
|
a
+2
b
|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知箱中共有6個(gè)球,其中紅球、黃球、藍(lán)球各2個(gè).每次從該箱中取1個(gè)球 (有放回,每球取到的機(jī)會(huì)均等),共取三次.設(shè)事件A:“第一次取到的球和第二次取到的球顏色相同”,事件B:“三次取到的球顏色都相同”,則P(B|A)=(  )
A、
1
6
B、
1
3
C、
2
3
D、1

查看答案和解析>>

同步練習(xí)冊(cè)答案