設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知ban-2n=(b-1)Sn.
(1)證明:當(dāng)b=2時(shí),{an-n·2n-1}是等比數(shù)列;
(2)求{an}的通項(xiàng)公式.
(1)見解析(2)an=
【解析】由題意知a1=2,且ban-2n=(b-1)Sn,ban+1-2n+1=(b-1)Sn+1,
兩式相減得b(an+1-an)-2n=(b-1)an+1,
即an+1=ban+2n.①
(1)證明 當(dāng)b=2時(shí),由①知an+1=2an+2n,
于是an+1-(n+1)·2n=2an+2n-(n+1)·2n=2(an-n·2n-1),
又a1-1·21-1=1≠0,所以{an-n·2n-1}是首項(xiàng)為1,公比為2的等比數(shù)列.
(2)當(dāng)b=2時(shí),由(1)知an-n·2n-1=2n-1,即an=(n+1)·2n-1;當(dāng)b≠2時(shí),由①得,an+1-·2n+1=ban+2n-·2n+1=ban-·2n=b ,因此an+1-·2n+1=b =·bn,
得an=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練1練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=ex-e-x(x∈R且e為自然對(duì)數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的奇偶性與單調(diào)性;
(2)是否存在實(shí)數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對(duì)一切x都成立?若存在,求出t;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)5-2空間向量與立體幾何練習(xí)卷(解析版) 題型:解答題
如圖所示的長(zhǎng)方體ABCD-A1B1C1D1中,底面ABCD是邊長(zhǎng)為2的正方形,O為AC與BD的交點(diǎn),BB1=,M是線段B1D1的中點(diǎn).
(1)求證:BM∥平面D1AC;
(2)求證:D1O⊥平面AB1C;
(3)求二面角B-AB1-C的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)5-1空間幾何體與點(diǎn)等練習(xí)卷(解析版) 題型:選擇題
若某多面體的三視圖(單位:cm)如圖所示,則此多面體的體積是( ).
A.cm3 B.cm3 C. cm3 D. cm3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)4-2數(shù)列求和與數(shù)列的綜合應(yīng)用練習(xí)卷(解析版) 題型:選擇題
等比數(shù)列{an}的前n項(xiàng)和公式Sn,若2S4=S5+S6,則數(shù)列{an}的公比q的值為 ( ).
A.-2或1 B.-1或 2 C.-2 D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)4-1等差數(shù)列與等比數(shù)列練習(xí)卷(解析版) 題型:選擇題
已知等比數(shù)列{an}中,a1=1,且4a2,2a3,a4成等差數(shù)列,則a2+a3+a4等于 ( ).
A.1 B.4 C.14 D.15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)3-2解三角形練習(xí)卷(解析版) 題型:填空題
在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,已知a、b、c成等比數(shù)列,且a2-c2=ac-bc,則A=________,△ABC的形狀為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)3-1三角函數(shù)與三角恒等變換練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)y=sin,則下列結(jié)論中正確的是( ).
A.關(guān)于點(diǎn)中心對(duì)稱
B.關(guān)于直線x=軸對(duì)稱
C.向左平移后得到奇函數(shù)
D.向左平移后得到偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-4練習(xí)卷(解析版) 題型:解答題
在直角坐標(biāo)系xOy中,橢圓C的參數(shù)方程為 (φ為參數(shù),a>b>0),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l與圓O的極坐標(biāo)方程分別為ρsin(θ+)=m(m為非零數(shù))與ρ=b.若直線l經(jīng)過橢圓C的焦點(diǎn),且與圓O相切,求橢圓C的離心率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com