分析 (1)已知等式整理后,利用余弦定理化簡求出cosA的值,進而求出sinA的值;
(2)利用三角形面積公式列出關系式,將sinA與已知面積代入求出bc的值,再將a與bc的值代入已知等式求出b2+c2的值,聯立即可求出b與c的值.
解答 解:(1)由在△ABC中,a2-c2=b2-$\frac{8bc}{5}$①,整理得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{4}{5}$,
則sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{3}{5}$;
(2)∵S=$\frac{1}{2}$bcsinA=24,sinA=$\frac{3}{5}$,
∴bc=80,
將a=6,bc=80代入①得:b2+c2=164,
與bc=80聯立,解得:b=10,c=8或b=8,c=10.
點評 此題考查了正弦、余弦定理,三角形面積公式,熟練掌握定理及公式是解本題的關鍵.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2},\frac{1}{3}$ | B. | $\frac{1}{3},\frac{2}{3}$ | C. | $\frac{1}{5},\frac{2}{5}$ | D. | $\frac{1}{3},\frac{1}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | 3 | D. | $\sqrt{2}+1$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{2}}{3}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 16 | B. | 24 | C. | 32 | D. | 40 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | -6 | C. | -$\frac{3}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $y=-\frac{1}{2}x+\frac{1}{2}$ | B. | $y=-\frac{1}{2}x+1$ | C. | y=2x-2 | D. | $y=\frac{1}{2}x+1$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 1或-1 | D. | -1或0或1 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com