【題目】已知函數(shù)(,是自然對數(shù)的底數(shù)).
(1)若是上的單調(diào)遞增函數(shù),求實數(shù)的取值范圍;
(2)當(dāng)時,證明:函數(shù)有最小值,并求函數(shù)最小值的取值范圍.
【答案】(Ⅰ)(Ⅱ)
【解析】試題分析: (Ⅰ)先將單調(diào)性轉(zhuǎn)化為不等式恒成立:當(dāng)時,函數(shù)恒成立,再變量分離轉(zhuǎn)化為對應(yīng)函數(shù)最值:的最小值,最后根據(jù)導(dǎo)數(shù)求函數(shù)最值,(Ⅱ)利用二次求導(dǎo),確定導(dǎo)函數(shù)為單調(diào)遞增函數(shù),再利用零點存在定理確定導(dǎo)函數(shù)有且僅有一個零點,根據(jù)導(dǎo)函數(shù)符號變化規(guī)律得函數(shù)在此零點(極小值點)取最小值.最后利用導(dǎo)函數(shù)零點表示函數(shù)最小值,并根據(jù)導(dǎo)函數(shù)零點取值范圍,利用導(dǎo)數(shù)方法確定最小值函數(shù)的值域.
試題解析: (Ⅰ),
依題意:當(dāng)時,函數(shù)恒成立,即恒成立,
記,則,
所以在上單調(diào)遞增,所以,所以,即;
(Ⅱ)因為,所以是上的增函數(shù),
又, ,所以存在使得
且當(dāng)時,當(dāng)時,所以的取值范圍是.
又當(dāng),,當(dāng)時,,
所以當(dāng)時,.且有
∴.
記,則,
所以,即最小值的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)在R上是單調(diào)遞減的一次函數(shù),且f(f(x))=4x-1.
(1)求f(x);
(2)求函數(shù)y=f(x)+x2-x在x∈[-1,2]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列{an}中,a1=1,S5=-15.
(1) 求數(shù)列{an}的通項公式;
(2) 若數(shù)列{an}的前k項和Sk=-48,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地方政府要將一塊如圖所示的直角梯形ABCD空地改建為健身娛樂廣場.已知AD//BC, 百米, 百米,廣場入口P在AB上,且,根據(jù)規(guī)劃,過點P鋪設(shè)兩條相互垂直的筆直小路PM,PN(小路的寬度不計),點M,N分別在邊AD,BC上(包含端點),區(qū)域擬建為跳舞健身廣場, 區(qū)域擬建為兒童樂園,其它區(qū)域鋪設(shè)綠化草坪,設(shè).
(1)求綠化草坪面積的最大值;
(2)現(xiàn)擬將兩條小路PNM,PN進行不同風(fēng)格的美化,PM小路的美化費用為每百米1萬元,PN小路的美化費用為每百米2萬元,試確定M,N的位置,使得小路PM,PN的美化總費用最低,并求出最小費用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為的函數(shù)是奇函數(shù).
(1)求實數(shù)的值; (2)判斷并證明在上的單調(diào)性;
(3)若對任意實數(shù),不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1: (t為參數(shù))曲線C2:+y2=4.
(1)在同一平面直角坐標系中,將曲線C2上的點按坐標變換后得到曲線C′。求曲線C′的普通方程,并寫出它的參數(shù)方程;
(2)若C1上的點P對應(yīng)的參數(shù)為t=π/2,Q為C′上的動點,求PQ中點M到直線C3: (t為參數(shù))的距離的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的極坐標方程為,直線的參數(shù)方程為.若直線與圓C相交于不同的兩點P,Q.
(Ⅰ)寫出圓C的直角坐標方程,并求圓心的坐標與半徑;
(Ⅱ)若弦長|PQ|=4,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個正數(shù)a,b,可按規(guī)則擴充為一個新數(shù)c,在a,b,c三個數(shù)中取兩個較大的數(shù),按上述規(guī)則擴充得到一個新數(shù),依次下去,將每擴充一次得到一個新數(shù)稱為一次操作.
(1)若a=1,b=3,按上述規(guī)則操作三次,擴充所得的數(shù)是_____________;
(2)若p>q>0,經(jīng)過6次操作后擴充所得的數(shù)為(m,n為正整數(shù)),
則m,n的值分別為____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com