【題目】已知曲線C1: (t為參數(shù))曲線C2:+y2=4.
(1)在同一平面直角坐標(biāo)系中,將曲線C2上的點(diǎn)按坐標(biāo)變換后得到曲線C′。求曲線C′的普通方程,并寫出它的參數(shù)方程;
(2)若C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)為t=π/2,Q為C′上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線C3: (t為參數(shù))的距離的最小值
【答案】(1)x2+y2=4, ;(2).
【解析】試題分析:(1)直接根據(jù)坐標(biāo)變換公式可得曲線C′的方程;(2) 曲線C′的方程的方程化為參數(shù)方程,根據(jù)參數(shù)方程可設(shè)M(-2+cosθ,2+sinθ),直線參數(shù)方程化為普通方程,利用點(diǎn)到直線的距離公式結(jié)合輔助角公式及三角函數(shù)的有界性可得結(jié)果.
試題解析:(1) 由得到①
將①代入+y2=4,得+y′2=4,即x′2+y′2=4.
因此橢圓+y2=4經(jīng)伸縮變換后得到的曲線方程是x2+y2=4.
它的參數(shù)方程為
當(dāng)t=π/2時(shí),P(-4,4),Q(2cosθ,2sinθ),故M(-2+cosθ,2+sinθ)
曲線C3:為直線x-2y+8=0,
M到C3的距離d=|(-2+cosθ)-2(2+sinθ)+8|=|cosθ-2sinθ+2|=|cos(θ+α)+2|
從而tanα=2時(shí)d的最小值為|-+2|=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知(x,y)在映射f的作用下的像是(x+y,xy).
(1)求(-2,3)在f作用下的像;
(2)若在f作用下的像是(2,-3),求它的原像.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方體中, 分別為的中點(diǎn).
(1)證明:平面平面;
(2)證明: 平面;
(3)若正方體棱長(zhǎng)為1,求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(,是自然對(duì)數(shù)的底數(shù)).
(1)若是上的單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),證明:函數(shù)有最小值,并求函數(shù)最小值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),利用函數(shù)單調(diào)性的定義判斷并證明的單調(diào)性,并求其值域;
(2)若對(duì)任意,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系下,已知曲線C1:ρ=cosθ+sinθ和曲線C2:ρsin(θ-)=.
(1)求曲線C1和曲線C2的直角坐標(biāo)方程;
(2)當(dāng)θ∈(0,π)時(shí),求曲線C1和曲線C2公共點(diǎn)的一個(gè)極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】試求下列函數(shù)的定義域與值域:
(1)f(x)=(x-1)2+1,x∈{-1,0,1,2,3};
(2)f(x)=(x-1)2+1;
(3)f(x)=;
(4)f(x)=x-.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù)f(x)=x (m∈N*).
(1)試確定該函數(shù)的定義域,并指明該函數(shù)在其定義域上的單調(diào)性;
(2)若該函數(shù)還經(jīng)過(guò)點(diǎn)(2, ),試確定m的值,并求滿足條件f(2-a)>f(a-1)的實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為2的正方形ACDE所在的平面與平面ABC垂直,AD與CE的交點(diǎn)為M,,且AC=BC.
(1)求證:平面EBC;
(2)求二面角的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com