【題目】已知A(x1 , y1),B(x2 , y2)是函數(shù)f(x)= 的圖象上的任意兩點(可以重合),點M在直線x= 上,且 =
(1)求x1+x2的值及y1+y2的值;
(2)已知S1=0,當n≥2時,Sn=f( )+f( )+f( )+…+f( ),求Sn

【答案】
(1)解:∵點M在直線x= 上,設M

= ,即 = , =

∴x1+x2=1.

①當x1= 時,x2= ,y1+y2=f(x1)+f(x2)=﹣1﹣1=﹣2;

②當x1 時,x2

y1+y2= + = = = =﹣2.

綜合①②得,y1+y2=﹣2.


(2)解:由(1)知,當x1+x2=1.y1+y2=﹣2.

+ =﹣2,k=1,2,3,…,n﹣1.)

n≥2時,Sn=f +f +…+f ,①

∴Sn= + +…+ ,②

①+②得,2Sn=﹣2(n﹣1),則Sn=1﹣n.

當n=1時,S1=0滿足Sn=1﹣n.

∴Sn=1﹣n.


【解析】(1)點M在直線x= 上,設M .又 = ,利用坐標運算x1+x2=1.①當x1= 時,x2= ,y1+y2=f(x1)+f(x2);②當x1 時,x2 .y1+y2= + 化簡即可得出.(2)由(1)知,當x1+x2=1.y1+y2=﹣2.可得 + =﹣2,k=1,2,3,…,n﹣1.即可得出.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中,點E是棱AB上的動點.
(1)求證:DA1⊥ED1;
(2)若直線DA1與平面CED1成角為45°,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017安徽淮北二模】如圖,三棱柱中,四邊形是菱形,,二面角 .

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}是公比不為1的等比數(shù)列,a1=1,且a1 , a3 , a2成等差數(shù)列.
(1)求數(shù)列{an}的通項;
(2)若數(shù)列{an}的前n項和為Sn , 試求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=2an﹣2(n∈N*),數(shù)列{bn}滿足b1=1,且點P(bn , bn+1)(n∈N*)在直線y=x+2上.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和Dn;
(3)設cn=ansin2 ,求數(shù)列{cn}的前2n項和T2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】A,B為曲線Cy=上兩點,AB的橫坐標之和為4.

(1)求直線AB的斜率;

(2)設M為曲線C上一點,CM處的切線與直線AB平行,且AMBM,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在下列四個正方體中,A,B為正方體的兩個頂點,M,N,Q為所在棱的中點,則在這四個正方體中,直接AB與平面MNQ不平行的是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O。DE、F為圓O上的點,△DBC,△ECA,△FAB分別是以BCCA,AB為底邊的等腰三角形。沿虛線剪開后,分別以BC,CAAB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐。當△ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為_______。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點,點C的坐標為(0,1).當m變化時,解答下列問題:

(1)能否出現(xiàn)ACBC的情況?說明理由;

(2)證明過A,B,C三點的圓在y軸上截得的弦長為定值.

查看答案和解析>>

同步練習冊答案